【總結(jié)】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學圓錐曲線的共同性質(zhì)課后知能檢測蘇教版選修1-1一、填空題1.若橢圓x225+y29=1上的點P到左焦點的距離為6,則點P到右準線的距離為________.【解析】∵?????PF1+PF2=10PF1=6,∴PF2=4,
2024-12-04 20:01
【總結(jié)】圓錐曲線同步練習一、選擇題(每題3分,共30分)?!鰽BC的頂點B、C在橢圓x23+y2=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是(c)(A)23(B)6(C)43(D)1222
2024-11-15 11:50
【總結(jié)】第二章圓錐曲線與方程1、曲線與方程的定義:2、求曲線方程的兩種類型:橢圓1、橢圓及其標準方程1、畫法3、方程
2025-04-04 05:16
【總結(jié)】第2章——圓錐曲線[學習目標]..、拋物線的定義和幾何圖形..1預習導學挑戓自我,點點落實2課堂講義重點難點,個個擊破3當堂檢測當堂訓練,體驗成功[知識鏈接]M到兩個定點F1、F2距離乊和滿足MF1+MF2=
2024-11-18 08:08
【總結(jié)】江蘇省響水中學高中數(shù)學第2章《圓錐曲線與方程》圓錐曲線的綜合運用(二)導學案蘇教版選修1-1學習目標:1.在理解和掌握圓錐曲線的定義和簡單幾何性質(zhì)的基礎(chǔ)上,學會有關(guān)圓錐曲線的知識的內(nèi)在聯(lián)系和綜合應用。、探索性問題、定點與定值問題、范圍與最值問題等。教學重點:解析幾何中最值問題。課前預習:1.設(shè)F1和F2是雙曲
2024-11-19 17:31
【總結(jié)】江蘇省響水中學高中數(shù)學第2章《圓錐曲線與方程》圓錐曲線的綜合運用(一)導學案蘇教版選修1-1學習目標:歸納圓錐曲線與其他知識點相結(jié)合的綜合性問題,如:解三角形、函數(shù)、數(shù)列、平面向量、不等式、方程等,掌握其解題技巧和方法,熟練運用設(shè)而不求與點差法.教學重點:解決圓錐曲線的應用問題的一般步驟。課前預習:
【總結(jié)】江蘇省漣水縣第一中學高中數(shù)學雙曲線的幾何性質(zhì)(2)教學案蘇教版選修1-1教學目標:1.了解雙曲線簡單幾何性質(zhì),如范圍、對稱性、頂點、漸近線和離心率等.2.能用雙曲線的簡單幾何性質(zhì)解決一些簡單問題.教學重點:雙曲線的幾何性質(zhì)及初步運用.教學難點:雙曲線的漸近線.教學過程:一復習回顧1.雙曲線的標準方程和幾何性質(zhì)
2024-12-05 03:09
【總結(jié)】江蘇省建陵高級中學2021-2021學年高中數(shù)學雙曲線標準方導學案(無答案)蘇教版選修1-1【學習目標】理解雙曲線的定義及標準方程【課前預習】1.回顧橢圓的定義,標準方程2.平面內(nèi)到兩定點的距離的差為常數(shù)的點的軌跡是什么?3.拉鏈演示4.雙曲線的定義:平面內(nèi)與兩個定點1F,2F的距
2024-12-06 00:25
【總結(jié)】第二章圓錐曲線與方程(時間90分鐘,滿分120分)一、選擇題(本大題共10小題,每小題5分共50分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.(20212青島高二檢測)橢圓2x2+3y2=6的長軸長是()A.3B.2C.22D.2
2024-12-05 06:38
【總結(jié)】圓錐曲線 圓錐曲線第第一二定定義義標準方程的關(guān)系橢圓性質(zhì)對稱性焦點頂點離心率準線焦半徑直線與橢圓的位置關(guān)系相交相切相離第第一二定定義義標準方程的關(guān)系雙曲線性質(zhì)對稱性焦點頂點離心率準線焦半徑直線與雙曲線的位置關(guān)系相交相切相離漸近線
2025-06-07 23:21
【總結(jié)】鹽城市時楊中學2021年達標課教學簡案學科數(shù)學授課教師張發(fā)軍授課班級高二(7)教學內(nèi)容雙曲線的幾何性質(zhì)(2)課型新授課課題:雙曲線的幾何性質(zhì)(2)一、三維目標:1、知識與技能:使學生掌握雙曲線的如下性質(zhì):對稱性、截距、頂點、軸、中心、離心率和準線。使學生能夠根據(jù)雙曲線的漸近線、確定雙曲線的范
2024-12-08 07:53
【總結(jié)】江蘇省響水中學高中數(shù)學第2章《圓錐曲線與方程》圓錐曲線的共同性質(zhì)(一)導學案蘇教版選修1-1學習目標:1.掌握橢圓、雙曲線的第二定義以及準線的概念2.類比拋物線的定義引出橢圓和雙曲線的第二定義,借助幾何畫板等多媒體手段探究出軌跡的形成,進一步推導出橢圓和雙曲線的方
【總結(jié)】第10課時圓錐曲線的綜合性問題與應用,如:解三角形、函數(shù)、數(shù)列、平面向量、不等式、方程等,掌握其解題技巧和方法,熟練運用設(shè)而不求與點差法.、探索性問題、定點與定值問題、范圍與最值問題等.圓錐曲線的綜合問題包括:軌跡問題、探索性問題、定點與定值問題、范圍與最值問題等,一般試題難度較大.這類問題以直線和圓錐曲線
2024-11-19 23:17
【總結(jié)】學大教育陳華偉數(shù)學圓錐曲線總結(jié)1、圓錐曲線的兩個定義:(1)第一定義中要重視“括號”內(nèi)的限制條件:橢圓中,與兩個定點F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當常數(shù)等于時,軌跡是線段FF,當常數(shù)小于時,無軌跡;雙曲線中,與兩定點F,F(xiàn)的距離的差的絕對值等于常數(shù),且此常數(shù)一定要小于|FF|,定義中的“絕對值”與<|FF|不可忽視。若=|FF|,則軌跡是以F,F(xiàn)為端點的兩條射
2025-03-23 12:46
【總結(jié)】雙曲線及其標準方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的復習|M
2024-11-19 16:21