【總結(jié)】PF2F1§橢圓及其標準方程(1)【使用說明及學法指導】1.先自學課本,理解概念,完成導學提綱;2.小組合作,動手實踐?!緦W習目標】1.從具體情境中抽象出橢圓的模型;2.掌握橢圓的定義;3.掌握橢圓的標準方程.【重點】理解橢圓的定義【難點】掌握橢圓的標準方程一、自主學習P3
2025-11-19 00:11
【總結(jié)】《橢圓》導學橢圓是我們生活中常見的一種曲線,如汽車油罐的橫截面、太陽系中九大行星及其衛(wèi)星運動的軌道、部分彗星的軌道等等都是橢圓形。研究橢圓的方程及其幾何性質(zhì),可以幫助我們解決一些實際問題。橢圓是解析幾何的重要內(nèi)容,是高考??嫉闹R點之一。知識要點梳理1、橢圓的定義:平面內(nèi)與兩個定點F1、F2的距離的和等于常數(shù)(大于│F1F2│)的點的軌跡叫做
2024-12-05 03:04
【總結(jié)】江蘇省建陵高級中學2020-2020學年高中數(shù)學函數(shù)的和、差、積、商的導數(shù)(2)導學案(無答案)蘇教版選修1-1一:學習目標1.準確記住函數(shù)和、差、積、商的導數(shù)公式并能熟練應用二:課前預習1.函數(shù)的和差積商的導數(shù)求導法則:(默寫)2.求下列函數(shù)的導數(shù):(1)423
2025-11-11 00:30
【總結(jié)】橢圓及其標準方程第一課時你能列舉幾個生活中見過的橢圓形狀的物品嗎?請同學們將一根無彈性的細繩兩端分別系在兩顆圖釘下部,并將圖釘固定,用筆繃緊細繩在紙上移動,觀察畫出的軌跡是什么曲線。繪圖紙上的三個問題1.視筆尖為動點,兩個圖釘為定點,動點到兩定點距離之和符合什么條件?其軌跡如
2025-11-08 17:38
【總結(jié)】橢圓及其標準方程2020年3月恩平一中:蘇彥斌難點:橢圓標準方程的推導和應用重點:1、掌握橢圓的定義及其標準方程2、求橢圓標準方程的方法知識與技能:1、學習橢圓的標準方程及其應用2、培養(yǎng)學生的數(shù)形結(jié)合的思想過程與方法:通過觀察圖形,理解定義,推導方程,學生達到自主學習
2025-11-08 19:50
【總結(jié)】復習::到兩定點F1、F2的距離之和為常數(shù)(大于|F1F2|)的動點的軌跡叫做橢圓。:a,b,c的關(guān)系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當焦點在X軸上時當焦點在Y軸上時)0(12222????babyax)0(12222????
2025-11-08 23:32
【總結(jié)】課題橢圓及標準方程(一)學習目標,經(jīng)歷從具體情境中抽象出橢圓的過程、橢圓標準方程的推導與化簡過程.、標準方程及幾何圖形.、變化的觀點認識橢圓,感知數(shù)學與實際生活的聯(lián)系,培養(yǎng)類比、數(shù)形結(jié)合的思想.學習重點:橢圓定義、標準方程及幾何圖形。學習難點:標準方程的推導。學習方法:以講學稿為依托的探究
2025-11-09 18:59
【總結(jié)】第2課時橢圓的簡單性質(zhì)a,b,c之間的關(guān)系.,并能利用簡單幾何性質(zhì)求橢圓的標準方程.,討論研究其幾何性質(zhì),使學生初步嘗試利用橢圓的標準方程來研究橢圓的幾何性質(zhì)的基本方法,加深對曲線與方程的理解,同時提高分析問題和解決問題的能力.1998年12月19日,太原衛(wèi)星發(fā)射中心為摩托羅拉公司(美國)
2025-11-10 20:36
【總結(jié)】江蘇省建陵高級中學2021-2021學年高中數(shù)學四種命題導學案(無答案)蘇教版選修1-1【學習目標】1.了解命題及其逆命題、否命題與逆否命題;理解四種命題之間的關(guān)系;2.會利用兩個命題互為逆否命題的關(guān)系判別命題的真假.【課前預習】?你能判斷它們的真假嗎?(1)若直線a∥b,則直線a和直線b無公共點;(2)
2024-12-04 18:08
【總結(jié)】江蘇省建陵高級中學2020-2020學年高中數(shù)學常見函數(shù)的導數(shù)(1)導學案(無答案)蘇教版選修1-1一、學習目標1.能由導數(shù)的定義三個步驟推導如ykxb??、yc?、yx?、2yx?、1yx?等最簡單函數(shù)的導數(shù)公式。2.熟記冪函數(shù)、指數(shù)對數(shù)函數(shù)、正弦余弦函數(shù)的導數(shù)公式。3.初步會利用導數(shù)公式求簡單函數(shù)的導
【總結(jié)】江蘇省建陵高級中學2021-2021學年高中數(shù)學拋物線的幾何導學案(無答案)蘇教版選修1-1【學習目標】1.掌握拋物線的簡單幾何性質(zhì);2.能根據(jù)拋物線方程解決簡單的應用問題【課前預習】、雙曲線來填寫下表圖形標準方程焦點坐標準線方程
2024-12-04 18:02
【總結(jié)】第7課時雙曲線及其標準方程.、幾何圖形.a,b,c的關(guān)系,并能利用雙曲線中a,b,c的關(guān)系處理“焦點三角形”中的相關(guān)運算.如圖所示,某農(nóng)場在M處有一堆肥料沿道路MA或MB送到稻田ABCD中去,已知|MA|=6,|MB|=8,|BC|=3,∠AMB=90°,能否在
2024-12-05 01:49
【總結(jié)】江蘇省漣水縣第一中學高中數(shù)學橢圓的幾何性質(zhì)(1)教學案蘇教版選修1-1教學目標:1.掌握橢圓的基本幾何性質(zhì):范圍、對稱性、頂點、長軸、短軸.2.感受如何運用方程研究曲線的幾何性質(zhì).教學重點:橢圓的幾何性質(zhì)——范圍、對稱性、頂點.教學難點:橢圓幾何性質(zhì)的研究過程,即如何運用橢圓標準方程研究橢圓的幾何性質(zhì).教學過程:
【總結(jié)】江蘇省漣水縣第一中學高中數(shù)學拋物線的標準方程教學案蘇教版選修1-1教學目標:掌握拋物線的定義和標準方程及其推導過程,理解拋物線中的基本量;掌握求拋物線的標準方程的基本方法;3.能夠熟練畫出拋物線的草圖,進一步提高學生“應用數(shù)學”的水平.重點難點:能根據(jù)已知條件求拋物線的標準方程.教學方法:講授法、討論法.教學過程:
【總結(jié)】(三)【學習目標】1.進一步熟悉橢圓的定義與標準方程;2.學會用定義法求曲線的方程奎屯王新敞新疆3.使學生掌握轉(zhuǎn)移法(也稱代換法,中間變量法,相關(guān)點法)求動點軌跡方程的方法與橢圓有關(guān)問題的解決奎屯王新敞新疆【自主檢測】已知B,C是兩個定點,||6BC?,且ABC?的周長等于16,求頂點A的軌跡方程.
2025-11-10 23:25