【總結(jié)】橢圓的幾何性質(zhì)(二)一、基礎過關1.橢圓x2+my2=1的焦點在x軸上,長軸長是短軸長的2倍,則m等于()B.2C.42.已知橢圓x24+y2=1的焦點為F1、F2,點M在該橢圓上,且MF1→·MF2→=0,則點M到y(tǒng)軸的距離
2025-11-24 11:30
【總結(jié)】圓錐曲線與方程第二章§3雙曲線雙曲線及其標準方程第二章課堂典例探究2課時作業(yè)3課前自主預習1課前自主預習,會推導雙曲線的標準方程.2.會用待定系數(shù)法求雙曲線的標準方程.類比橢圓的定義我們可以給出雙曲線的定義在平面內(nèi)到兩個定點F1、F2距離之_____的絕對值等
2025-11-07 23:24
【總結(jié)】導數(shù)的幾何意義一、基礎過關1.下列說法正確的是()A.若f′(x0)不存在,則曲線y=f(x)在點(x0,f(x0))處就沒有切線B.若曲線y=f(x)在點(x0,f(x0))處有切線,則f′(x0)必存在C.若f′(x0)不存在,則曲線y=f(x)在點(x0,
【總結(jié)】橢圓的幾何性質(zhì)(一)一、基礎過關1.已知點(3,2)在橢圓x2a2+y2b2=1上,則()A.點(-3,-2)不在橢圓上B.點(3,-2)不在橢圓上C.點(-3,2)在橢圓上D.無法判斷點(-3,-2)、(3,-2)、(-3,2)是否在橢圓上2
【總結(jié)】鹽城市時楊中學2021年達標課教學簡案學科數(shù)學授課教師張發(fā)軍授課班級高二(7)教學內(nèi)容雙曲線的幾何性質(zhì)(2)課型新授課課題:雙曲線的幾何性質(zhì)(2)一、三維目標:1、知識與技能:使學生掌握雙曲線的如下性質(zhì):對稱性、截距、頂點、軸、中心、離心率和準線。使學生能夠根據(jù)雙曲線的漸近線、確定雙曲線的范
2025-11-29 07:53
【總結(jié)】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學拋物線及其標準方程課后知能檢測新人教B版選修1-1一、選擇題1.(2021·濟南高二檢測)若動點P與定點F(1,1)和直線3x+y-4=0的距離相等,則動點P的軌跡是()A.橢圓B.雙曲線C.拋物線D.直線【解析】
【總結(jié)】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學雙曲線的標準方程課后知能檢測蘇教版選修1-1一、填空題1.雙曲線x216-y29=1的焦點坐標為________.【解析】∵c2=a2+b2=25,∴焦點坐標為(±5,0).【答案】(±5,0)2.
2025-11-25 18:02
【總結(jié)】利用導數(shù)研究函數(shù)的極值(二)一、基礎過關1.函數(shù)f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分別是()A.f(2),f(3)B.f(3),f(5)C.f(2),f(5)D.f(5),f(3)2.f(x)=x3-3x2+2在區(qū)間[-1,1]上的最大值
2025-11-10 10:30
【總結(jié)】關于x軸、y軸、原點對稱圖形方程范圍對稱性頂點離心率)0(1????babyax2222A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)),b(abxay001????2222Rxayay????,或關于x軸、y軸、原點對稱)1
2025-11-08 17:10
【總結(jié)】命題的四種形式一、基礎過關1.設a,b是向量,命題“若a=-b,則|a|=|b|”的逆命題是()A.若a≠-b,則|a|≠|(zhì)b|B.若a=-b,則|a|≠|(zhì)b|C.若|a|≠|(zhì)b|,則a≠-bD.若|a|=|b|,則a=-b2.命題“若a>
【總結(jié)】利用導數(shù)研究函數(shù)的極值(一)一、基礎過關1.函數(shù)y=f(x)的定義域為(a,b),y=f′(x)的圖象如圖,則函數(shù)y=f(x)在開區(qū)間(a,b)內(nèi)取得極小值的點有()A.1個B.2個C.3個D.4個2.下列關于函數(shù)的極值的
【總結(jié)】《雙曲線的簡單幾何性質(zhì)》教學目標?知識與技能目標?了解平面解析幾何研究的主要問題:(1)根據(jù)條件,求出表示曲線的方程;(2)通過方程,研究曲線的性質(zhì).理解雙曲線的范圍、對稱性及對稱軸,對稱中心、離心率、頂點、漸近線的概念;掌握雙曲線的標準方程、會用雙曲線的定義解決實際問題;通過例題和探究了解雙曲線的第二定義,準線及焦半徑的概念,利用信
2025-11-09 12:15
【總結(jié)】§導數(shù)的運算常數(shù)與冪函數(shù)的導數(shù)導數(shù)公式表一、基礎過關1.下列結(jié)論中正確的個數(shù)為()①y=ln2,則y′=12②y=1x2,則y′|x=3=-227③y=2x,則y′=2xln2④y=log2x,則y′=1xln2A.0
【總結(jié)】雙曲線及其標準方程(二)【學習目標】進一步掌握雙曲線的定義,熟記雙曲線的標準方程.【自主學習】名稱橢圓雙曲線圖象xOyxOy定義平面內(nèi)到兩定點21,FF的距離的和為常數(shù)(大于21FF
2025-11-14 01:00
【總結(jié)】雙曲線及其標準方程(一)【學習目標】初步掌握雙曲線的定義,熟記雙曲線的標準方程.【自主學習】:手工操作演示雙曲線的形成:(按課本52頁的做法去做)分析:(1)軌跡上的點是怎么來的?(2)在這個運動過程中,什么是不變的?2.雙曲線的定義:平面內(nèi)到兩定點21,FF的距離的為常數(shù)
2025-11-26 06:41