【總結】【成才之路】2021-2021學年高中數(shù)學拋物線及其標準方程練習北師大版選修1-1一、選擇題1.平面內(nèi)到定點F的距離等于到定直線l的距離的點的軌跡是()A.拋物線B.直線C.拋物線或直線D.不存在[答案]C[解析]當點F在直線l上時,為過點F與l垂直的直線;當點F不在直線l上
2024-11-28 19:11
【總結】●教學目標、實虛半軸、焦點、離心率、漸近線方程.●教學重點雙曲線的幾何性質(zhì)●教學難點雙曲線的漸近線●教學方法學導式●教具準備幻燈片、三角板●教學過程:師:上一節(jié),我們學習了雙曲
2024-12-08 01:51
【總結】橢圓的標準方程二、教學過程1、引入課題2、復習定義3、推導方程4、結構分析5、鞏固練習壓扁教學過程F1F2P兩焦點之間的距離叫做焦距.定點F1、F2叫做橢圓的焦點。平面內(nèi)與兩個定點F1、F2的距離的和等于常數(shù)(大于F1F2)的點的軌跡叫橢圓2、當線長小于
2024-11-18 15:25
【總結】-*-§3雙曲線-*-雙曲線及其標準方程首頁XINZHIDAOXUE新知導學ZHONGNANTANJIU重難探究DANGTANGJIANCE當堂檢測學習目標思維脈絡1.理解并掌握雙曲線的定義,了解雙曲線的焦點、焦距.2.掌握雙曲線的標準方程,能利用定義求標準方程
2024-11-16 23:24
【總結】《雙曲線的簡單幾何性質(zhì)》教學目標?知識與技能目標?了解平面解析幾何研究的主要問題:(1)根據(jù)條件,求出表示曲線的方程;(2)通過方程,研究曲線的性質(zhì).理解雙曲線的范圍、對稱性及對稱軸,對稱中心、離心率、頂點、漸近線的概念;掌握雙曲線的標準方程、會用雙曲線的定義解決實際問題;通過例題和探究了解雙曲線的第二定義,準線及焦半徑的概念,利用信
2024-11-18 12:15
【總結】《雙曲線及其標準方程》教學目標?知識與技能目標?理解雙曲線的概念,掌握雙曲線的定義、會用雙曲線的定義解決實際問題;理解雙曲線標準方程的推導過程及化簡無理方程的常用的方法;了解借助信息技術探究動點軌跡的《幾何畫板》的制作或操作方法。?過程與方法目標?(1)預習與引入過程?預習教科書有關內(nèi)容,思考當變化的平
2024-11-19 16:29
【總結】圓錐曲線與方程第二章§3雙曲線雙曲線及其標準方程第二章課堂典例探究2課時作業(yè)3課前自主預習1課前自主預習,會推導雙曲線的標準方程.2.會用待定系數(shù)法求雙曲線的標準方程.類比橢圓的定義我們可以給出雙曲線的定義在平面內(nèi)到兩個定點F1、F2距離之_____的絕對值等
【總結】雙曲線及其標準方程【學習目標】1.掌握雙曲線的定義;2.掌握雙曲線的標準方程.【重點難點】雙曲線的概念,雙曲線標準方程雙曲線標準方程的推導過程及化簡無理方程的常用的方法【學習過程】一、自主預習(預習教材理P52~P55,文P45~P48找出疑惑之處)復習1:橢圓的定義是什么?橢圓的標準方程
2024-12-06 00:20
【總結】雙曲線的定義:平面內(nèi)與兩定點F1,F(xiàn)2的距離的差的絕對值等于常數(shù)2a點的軌跡叫做雙曲線。12()FF小于F1,F2-----焦點||MF1|-|MF2||=2a|F1F2|-----焦距.F2.F1Myox注意:對于雙曲線定義須抓住三點
2024-11-17 23:34
【總結】雙曲線及其標準方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的復習雙曲
2024-11-19 16:28
【總結】江蘇省漣水縣第一中學高中數(shù)學雙曲線的標準方程(2)教學案蘇教版選修1-1教學目標:使學生進一步了解雙曲線的定義,熟記雙曲線的標準方程教學重點:根據(jù)已知條件求雙曲線的標準方程.橢圓和雙曲線標準形式中a,b,c間的關系.教學難點:用雙曲線的標準方程處理簡單的實際問題.教學過程:一、復習提問1.雙曲線的標準方程:
2024-11-20 00:31
【總結】定義與方程罐車的橫截面數(shù)學實驗?[1]取一條細繩,?[2]把它的兩端固定在板上的兩點F1、F2?[3]用鉛筆尖(M)把細繩拉緊,在板上慢慢移動看看畫出的圖形F1F2M觀察做圖過程:[1]繩長應當大于F1、F2之間的距離。[2]
2024-11-17 20:06
【總結】選修1-1雙曲線及其標準方程一、選擇題1.已知點F1(0,-13),F(xiàn)2(0,13),動點P到F1與F2的距離之差的絕對值為26,則動點P的軌跡方程為()A.y=0B.y=0(|x|≥13)C.x=0(|y|≥13)D.以上都不對[答案]C[解析]∵||PF1|-
2024-11-28 07:24
【總結】雙曲線的幾何性質(zhì)一、基礎過關1.雙曲線2x2-y2=8的實軸長是()A.2B.22C.4D.422.雙曲線3x2-y2=3的漸近線方程是()A.y=±3xB.y=±13xC.y=±3xD
2024-12-03 04:57
【總結】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析雙曲線要點·疑點·考點(1)雙曲線的第一定義:平面內(nèi)與兩個定點F1、F2的距離差的絕對值是常數(shù)(小于|F1F2|)(2)雙
2024-11-18 15:24