【總結】2.等差數(shù)列的前n項和學習目標預習導學典例精析欄目鏈接情景導入數(shù)學史上有一顆光芒四射的巨星,他與阿基米德、牛頓齊名,被稱為歷史上最偉大的三位數(shù)學家之一,他就是18世紀德國著名的數(shù)學家——高斯.高斯在上小學時,就能很快地算出1+2+3+…+1
2024-11-17 23:16
【總結】等差數(shù)列的通項公式教學目標:1.掌握“疊加法”求等差數(shù)列通項公式的方法;2.掌握等差數(shù)列的通項公式,并能用公式解決一些簡單的問題;3.理解等差數(shù)列的性質,能熟練運用等差數(shù)列的性質解決有關問題.教學重點:等差數(shù)列的通項公式,關鍵對通項公式含義的理解.教學難點:等差數(shù)列的性質和應用.教學方法:
2024-11-20 01:05
【總結】課題:等差數(shù)列的通項公式班級:姓名:學號:第學習小組【學習目標】:1、會用“疊加法”求等差數(shù)列通項公式;2、會用等差數(shù)列通項公式解決一些簡單問題。【課前預習】??na,4,7,10,13,16,?,則100a=,猜想na=
【總結】等差數(shù)列的概念及通項公式?學習目標:,理解等差數(shù)列的概念..,發(fā)現(xiàn)數(shù)列的等差關系,并能用有關知識解決相應的問題..復習數(shù)列的有關概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項。數(shù)列中的各項依次叫做這個數(shù)列的第1項(或首項)用表示,1a第2項
2024-11-17 17:33
【總結】第一頁,編輯于星期六:點三十四分。,2.2等差數(shù)列第二課時等差數(shù)列的性質,第二頁,編輯于星期六:點三十四分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十四分。,第四頁,編輯于星期六...
2024-10-22 18:52
【總結】第一篇:高中數(shù)學必修5新教學案:(第2課時)(推薦) 必修5(學案) (第2課時) 【知識要點】 ;;;.【學習要求】 ; ,并會運用等差中項和等差數(shù)列的性質解題;.【預習提綱】 (根據(jù)...
2024-10-26 10:00
【總結】2.等差數(shù)列的前n項和1.(1)對于任意數(shù)列{an},Sn=a1+a2+a3+?+an,叫做數(shù)列{an}的前n項的和.(2)Sn-Sn-1=an(n≥2),a1=S1(n=1).2.(1)等差數(shù)列{an}的前n項和公式為Sn=n(a1+an)2或Sn=na1+n(n-1)d2.(2)
2024-12-05 10:14
【總結】等差數(shù)列的前n項和(二)課時目標n項和的性質,并能靈活運用.n項和的最值問題.an與Sn的關系,能根據(jù)Sn求an.1.前n項和Sn與an之間的關系對任意數(shù)列{an},Sn是前n項和,Sn與an的關系可以表示為an=?????n=,n2.
2024-12-08 13:12
【總結】等差數(shù)列前n項和說課稿各位評委,您們好。。下面我從教材分析、教學目標分析、教法與學法分析、教學過程分析、板書設計分析、評價分析等六個方面對本節(jié)課設計進行說明。一、教材分析1、教材的地位與作用(1)等差數(shù)列的前n項和的公式是等差數(shù)列的定義、通項、前n項和三大重要內容之一。(2)推導等差數(shù)列的前n項和公式提出了一種嶄新的數(shù)學方法——倒序求和法。(3)等差數(shù)列的前n項和公式
2025-04-07 02:59
【總結】等差數(shù)列(第1課時)學習目標掌握等差數(shù)列的概念;理解等差數(shù)列的通項公式的推導過程;了解等差數(shù)列的函數(shù)特征;能用等差數(shù)列的通項公式解決相應的一些問題.讓學生親身經歷“從特殊入手,研究對象的性質,再逐步擴大到一般”這一研究過程,培養(yǎng)他們觀察、分析、歸納、推理的能力.通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求索精神;使學生
2024-12-08 20:23
【總結】課題:必修⑤三維目標:1、知識與技能(1)理解等差數(shù)列前項和的定義以及等差數(shù)列前項和公式推導的過程,并理解推導此公式的方法——倒序相加法,記憶公式的兩種形式;(2)用方程思想認識等差數(shù)列前項和的公式,利用公式求;等差數(shù)列通項公式與前項和的公式兩套公式涉及五個字母,已知其中三個量求另兩個值;(3)會用等差數(shù)列的前項和公式解決一些簡單的與前項和有關的問題.
2025-06-07 23:27
【總結】北師大版高中數(shù)學必修5第一章《數(shù)列》歡迎指導!法門高中姚連省制作等差數(shù)列(一)教學目標及重點難點教學目標?,理解并掌握等差數(shù)列的通項公式,能運用公式解決簡單的問題。?,進一步提高學生的推理歸納能力。重點難點???“等差”特點的理解、把握及
2025-01-13 12:05
【總結】第一篇:高中數(shù)學(二)新人教A版必修5 等差數(shù)列 (第一課時)[講授新課]1.等差數(shù)列:一般地,如果一個數(shù)列從第二項起,每一項與它前一項的差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列,這個常數(shù)就叫做等...
2024-10-14 05:43
【總結】2.等差數(shù)列的概念及通項公式1.如果一個數(shù)列從第二項起,每一項減去它的前一項所得的差都等于同一個常數(shù),那么這個數(shù)列叫做等差數(shù)列.這個常數(shù)叫做等差數(shù)列的公差.2.如果數(shù)列{an}是公差為d的等差數(shù)列,則a2=a1+d;a3=a2+d=a1+2d.3.等差數(shù)列的通項公式為an=a1+(n-1)d.
2024-12-08 20:22