【總結(jié)】=(1100)(299)(5051)??????原式那么S=1+2+3+…+997+998+999=?倒序相加法求等差數(shù)列前n項(xiàng)和:)?梯上底下底高(+S=2解:3)1313??11371(a+a2aS===52.2
2025-05-12 17:18
【總結(jié)】等差數(shù)列的前n項(xiàng)和一、數(shù)列前n項(xiàng)和的意義數(shù)列{an}:a1,a2,a3,…,an,…我們把a(bǔ)1+a2+a3+…+an叫做數(shù)列{an}的前n項(xiàng)和,記作Sn.二、問(wèn)題A?如圖,建筑工地上一堆圓木,從上到下每層的數(shù)目分別為1,2,3,……,10.問(wèn)共有多少根
2024-10-16 20:23
【總結(jié)】等差數(shù)列的前n項(xiàng)和(二)課時(shí)目標(biāo)n項(xiàng)和的性質(zhì),并能靈活運(yùn)用.n項(xiàng)和的最值問(wèn)題.an與Sn的關(guān)系,能根據(jù)Sn求an.1.前n項(xiàng)和Sn與an之間的關(guān)系對(duì)任意數(shù)列{an},Sn是前n項(xiàng)和,Sn與an的關(guān)系可以表示為an=?????(n=1),
2024-12-05 01:49
【總結(jié)】課題:等差數(shù)列前n項(xiàng)和公式(1)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】掌握等差數(shù)列的前n項(xiàng)和的公式及推導(dǎo)該公式的數(shù)學(xué)思想方法,能運(yùn)用等差數(shù)列的前n項(xiàng)和的公式求等差數(shù)列的前n項(xiàng)和.【課前預(yù)習(xí)】1.(1)你如何快速求出?100321??????
2024-11-20 01:05
【總結(jié)】安宜高級(jí)中學(xué)盧其明(第二課時(shí))知識(shí)回顧::an=a1+(n-1)d;:(1)an-am=(n-m)d;(2)若m+n=p+q,則am+an=ap+aq。n項(xiàng)和公式:例{an}的前10項(xiàng)的和是30,前20項(xiàng)的和是100,求前30項(xiàng)的和。變題{an}的前m
2024-11-09 12:47
【總結(jié)】等差數(shù)列的前n項(xiàng)和復(fù)習(xí)數(shù)列的有關(guān)概念1…,按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng)。數(shù)列中的各項(xiàng)依次叫做這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng))用表示,第2項(xiàng)用表示,第n項(xiàng)用表示,…,數(shù)列的一般形式可以寫(xiě)成:
2024-11-09 12:24
【總結(jié)】等差數(shù)列的前n項(xiàng)和A組基礎(chǔ)鞏固1.在等差數(shù)列{an}中,S10=120,則a2+a9=()A.12B.24C.36D.48解析:S10=a1+a102=5(a2+a9)=120.∴a2+a9=24.答案:B2.設(shè)數(shù)列{an}是等差數(shù)列,且a2=-6,a8=6,Sn是
2024-12-08 20:22
【總結(jié)】第六章數(shù)列二等差數(shù)列第1課時(shí)課題:(1)教學(xué)目標(biāo)1、知識(shí)點(diǎn):了解等差數(shù)列前項(xiàng)和的定義,了解倒序相加的原理,理解等差數(shù)列前項(xiàng)和公式推導(dǎo)的過(guò)程,掌握等差數(shù)列前項(xiàng)和的公式,記憶公式的兩種形式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題.;2、能力訓(xùn)練目標(biāo):(1)通過(guò)公式的推導(dǎo)和公式的運(yùn)用,使學(xué)生體會(huì)從特殊到一般,再?gòu)囊话愕教厥獾乃季S規(guī)律,初步形成認(rèn)識(shí)問(wèn)題,解決問(wèn)題的一般
2025-04-17 08:31
【總結(jié)】景榮洲課前熱身(3)等差數(shù)列的性質(zhì).(1)等差數(shù)列的定義.一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列(2)等差數(shù)列通項(xiàng)公式dnaan)1(1???若a、b、c成等差數(shù)列,則2b=a+c(引申)若m、n、
2024-11-17 05:48
【總結(jié)】1等差數(shù)列題型匯總題型一、計(jì)算求值(等差數(shù)列基本概念的應(yīng)用)1、等差數(shù)列{an}的前三項(xiàng)依次為a-6,2a-5,-3a+2,則a等于()A.-1B.1C.-2D.22.在數(shù)列{an}中,a1=2,2an+1=2an+1,則a101的值為( ?。〢.49B.50C
2025-08-05 18:21
【總結(jié)】等差數(shù)列的前n項(xiàng)和(2)教學(xué)目標(biāo):1.進(jìn)一步熟練掌握等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式.2.了解等差數(shù)列的一些性質(zhì),并會(huì)用它們解決一些相關(guān)問(wèn)題.教學(xué)重點(diǎn):熟練掌握等差數(shù)列的求和公式.教學(xué)難點(diǎn):靈活應(yīng)用求和公式解決問(wèn)題.教學(xué)方法:?jiǎn)l(fā)、討論、引導(dǎo)式.教學(xué)過(guò)程:一、問(wèn)題情境
【總結(jié)】等差數(shù)列的前n項(xiàng)和一、教材分析1.教學(xué)內(nèi)容:本節(jié)課是高中人教A版必修5第二章第三節(jié)第一課時(shí)的內(nèi)容。主要研究等差數(shù)列的前n項(xiàng)和公式的推導(dǎo)及其簡(jiǎn)單應(yīng)用。2.地位與作用本節(jié)課是前面所學(xué)知識(shí)的延續(xù)和深化,又是后面學(xué)習(xí)“等比數(shù)列及其前n項(xiàng)和”的基礎(chǔ)和前奏。學(xué)好了本節(jié)課的內(nèi)容,既能加深對(duì)數(shù)列有關(guān)概念的理解,又能為后面學(xué)好等比數(shù)列及數(shù)列求和
【總結(jié)】第一頁(yè),編輯于星期六:點(diǎn)三十四分。,2.3等差數(shù)列的前n項(xiàng)和第一課時(shí)等差數(shù)列前n項(xiàng)和的基本問(wèn)題,第二頁(yè),編輯于星期六:點(diǎn)三十四分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁(yè),編輯于星期六:點(diǎn)三十四分。...
2024-10-22 18:53
【總結(jié)】復(fù)習(xí)回顧通項(xiàng)公式:等差數(shù)列中:前n項(xiàng)和公式:例題講解例1.求集合中元素的個(gè)數(shù),并求這些元素的和。解:代公式可得或由,即或答:集合M中共有14個(gè)元素,它們的和等于7
2024-11-09 05:34
【總結(jié)】等差數(shù)列的前n項(xiàng)和理解教材新知突破??碱}型跨越高分障礙第二章題型一題型二應(yīng)用落實(shí)體驗(yàn)隨堂即時(shí)演練課時(shí)達(dá)標(biāo)檢測(cè)題型三知識(shí)點(diǎn)一知識(shí)點(diǎn)二題型四[導(dǎo)入新知]數(shù)列的前n項(xiàng)和對(duì)于數(shù)列{an},一般地稱(chēng)
2024-11-17 17:05