【總結】橢圓的幾何性質(二)一、基礎過關1.橢圓x2+my2=1的焦點在x軸上,長軸長是短軸長的2倍,則m等于()B.2C.42.已知橢圓x24+y2=1的焦點為F1、F2,點M在該橢圓上,且MF1→·MF2→=0,則點M到y(tǒng)軸的距離
2024-12-03 11:30
【總結】圓錐曲線與方程第二章§1橢圓橢圓的簡單幾何性質第二章課堂典例探究2課時作業(yè)3課前自主預習1課前自主預習.2.利用橢圓的簡單幾何性質解決一些簡單問題.橢圓的簡單幾何性質1.觀察橢圓的圖形可以發(fā)現(xiàn),橢圓是_____對稱圖形,也是_____
2025-11-07 23:27
【總結】橢圓及其標準方程2020年3月恩平一中:蘇彥斌難點:橢圓標準方程的推導和應用重點:1、掌握橢圓的定義及其標準方程2、求橢圓標準方程的方法知識與技能:1、學習橢圓的標準方程及其應用2、培養(yǎng)學生的數(shù)形結合的思想過程與方法:通過觀察圖形,理解定義,推導方程,學生達到自主學習
2025-11-08 19:50
【總結】橢圓的標準方程第2課時橢圓的定義?平面內與兩個定點F1,F(xiàn)2的距離的和等于常數(shù)(大于F1F2)的點的軌跡叫做橢圓。?這兩個定點F1、F2叫做橢圓的焦點,兩個焦點間的距離叫做橢圓的焦距。不同點相同點定義參數(shù)y1F2FPBx
2025-11-09 15:26
【總結】已知方程表示焦點在x軸上的橢圓,則m的取值范圍是.22xy+=14m(0,4)變式:已知方程表示焦點在y軸上的橢圓,則m的取值范圍是.22xy+=1m
2025-11-09 01:22
【總結】江蘇省漣水縣第一中學高中數(shù)學橢圓的幾何性質(2)教學案蘇教版選修1-1教學目標:1.進一步熟悉橢圓的基本幾何性質:范圍、對稱性、頂點、長軸、短軸,研究并理解橢圓的離心率的概念.來2.掌握橢圓標準方程中a,b,c,e的幾何意義及相互關系.教學重點:橢圓的幾何性質——范圍、對稱性、頂點、離心率.教學難點:
2025-11-11 00:31
【總結】新課標人教版課件系列《高中數(shù)學》選修1-1《雙曲線的簡單幾何性質》教學目標?知識與技能目標?了解平面解析幾何研究的主要問題:(1)根據(jù)條件,求出表示曲線的方程;(2)通過方程,研究曲線的性質.理解雙曲線的范圍、對稱性及對稱軸,對稱中心、離心率、頂點、漸近線的概念;掌握雙曲線的標準方程、會用雙曲線的定義解決實際
2024-11-30 12:26
【總結】復習::到兩定點F1、F2的距離之和為常數(shù)(大于|F1F2|)的動點的軌跡叫做橢圓。:a,b,c的關系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當焦點在X軸上時當焦點在Y軸上時)0(12222????babyax)0(12222????
2025-11-09 12:15
【總結】江蘇省漣水縣第一中學高中數(shù)學橢圓的幾何性質(1)教學案蘇教版選修1-1教學目標:1.掌握橢圓的基本幾何性質:范圍、對稱性、頂點、長軸、短軸.2.感受如何運用方程研究曲線的幾何性質.教學重點:橢圓的幾何性質——范圍、對稱性、頂點.教學難點:橢圓幾何性質的研究過程,即如何運用橢圓標準方程研究橢圓的幾何性質.教學過程:
2024-12-04 18:02
【總結】橢圓的方程與性質一、選擇題1.下列命題是真命題的是()A.到兩定點距離之和為常數(shù)的點的軌跡是橢圓B.到定直線cax2?和定點F(c,0)的距離之比為ac的點的軌跡是橢圓C.到定點F(-c,0)和定直線cax2??的距離之比為ac(ac0)的點的軌跡是左半個橢圓
2025-11-03 02:00
【總結】標準方程復習引入:yOAF1F2xMcc把平面內與兩個定點F1、F2的距離的和等于常數(shù)2a(大于|F1F2|)的點的軌跡叫作橢圓.復習引入:yOAF1F2xMcc把平面內
2025-07-24 18:14
【總結】雙曲線的幾何性質一、基礎過關1.雙曲線2x2-y2=8的實軸長是()A.2B.22C.4D.422.雙曲線3x2-y2=3的漸近線方程是()A.y=±3xB.y=±13xC.y=±3xD
2024-12-03 04:57
【總結】雙曲線的簡單幾何性質(二)取值范圍。的,求率為一象限的那條漸近線斜,設該雙曲線過第,的離心率,已知雙曲線kkebabyax]22[)00(2222?????的方程,求直線若兩點,于交的直線與斜率為雙曲線Lyx4|AB|.BAL212322???.22的取
2025-11-09 15:25
【總結】雙曲線的簡單幾何性質(一)復習回顧(1)雙曲線的標準方程.xyo-aa(-x,-y)(-x,y)(x,y)(x,-y)探究一.)(幾何性質的,分析雙曲線0012222????babyax(1)范圍(2)對稱性x≥a,或x≤-a在標準方
【總結】第三章導數(shù)及其應用yxoQPQQ)(xfy?Tyxo)(xfy?P相交再來一次直線PQ的斜率為xyxxxyyyxxyykPQPQPQ?????????????0000)()(PQ無限靠近切線PTxykk
2025-11-08 20:11