【總結(jié)】一、復(fù)習(xí)幾何意義:曲線在某點處的切線的斜率;(瞬時速度或瞬時加速度)物理意義:物體在某一時刻的瞬時度。2、由定義求導(dǎo)數(shù)(三步法)步驟:);()()1(xfxxfy?????求增量;)()()2(xxfxxfxy???????算比值)(,0)3(xfxyx????
2024-11-17 20:20
【總結(jié)】雙曲線的性質(zhì)(一)222bac??定義圖象方程焦點的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)12222??byax12
2024-11-18 08:47
【總結(jié)】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)第三章第3課瞬時變化率—導(dǎo)數(shù)(瞬時速度和瞬時加速度)教學(xué)案蘇教版選修1-1班級:高二()班姓名:____________教學(xué)目標(biāo):1.理解并掌握瞬時速度的定義;2.會運用瞬時速度的定義求物體在某一時刻的瞬時速度和瞬時加速度;3.理解瞬時速度的實際背景,培養(yǎng)學(xué)生解決實際問題的能力
2024-12-04 18:01
【總結(jié)】1=6例:橢圓過(3,0)點,離心率e,3求橢圓的標(biāo)準(zhǔn)方程。22221193927xyxy????答案:或220143120,xyP????V1212例2:已知橢圓的方程為,若點在第
【總結(jié)】圓錐曲線的統(tǒng)一定義江蘇省運河中學(xué)高二備課組2、雙曲線的定義:平面內(nèi)到兩定點F1、F2距離之差的絕對值等于常數(shù)2a(2a|F1F2|)的點的軌跡表達(dá)式||PF1|-|PF2||=2a(2a|F1F2|)3、拋物線的定義:平面內(nèi)到定點F的距離和到定直線的距離相等的點的軌跡表達(dá)式|PF|=
2024-11-17 23:32
【總結(jié)】關(guān)于x軸、y軸、原點對稱圖形方程范圍對稱性頂點離心率)0(1????babyax2222A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)),b(abxay001????2222Rxayay????,或關(guān)于x軸、y軸、原點對稱)1
2024-11-17 17:10
【總結(jié)】雙曲線的定義:平面內(nèi)與兩定點F1,F(xiàn)2的距離的差的絕對值等于常數(shù)2a點的軌跡叫做雙曲線。12()FF小于F1,F2-----焦點||MF1|-|MF2||=2a|F1F2|-----焦距.F2.F1Myox注意:對于雙曲線定義須抓住三點
2024-11-17 23:34
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)平均變化率課后知能檢測蘇教版選修1-1一、填空題1.函數(shù)f(x)=x+1x在[2,3]上的平均變化率為________.【解析】f(3)-f(2)3-2=(3+13)-(2+12)3-2=56.【答案】562.一質(zhì)
2024-12-04 20:01
【總結(jié)】))()(xxfxxfkPQ?????)斜率無限趨限趨近點P處切,時0無限趨限當(dāng)(kx?知識回顧設(shè)物體作直線運動所經(jīng)過的路程為s=f(t)。以t0為起始時刻,物體在?t時間內(nèi)的平均速度為?vttfttfts????????)()(
2024-07-28 19:09
【總結(jié)】3.1《變化的快慢與變化率》§1變化的快慢與變化率樹高:15米樹齡:1000年高:15厘米時間:兩天實例1分析銀杏樹雨后春筍實例2分析物體從某一時刻開始運動,設(shè)s表示此物體經(jīng)過時間t走過的路程,在運動的過程中測得了一些數(shù)據(jù),如下表.t(秒)025
2024-11-18 13:30
【總結(jié)】雙曲線及其標(biāo)準(zhǔn)方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的復(fù)習(xí)|M
2024-11-19 16:21
【總結(jié)】《變化率與導(dǎo)數(shù)》教學(xué)目標(biāo)?了解導(dǎo)數(shù)概念的實際背景,體會導(dǎo)數(shù)的思想及其內(nèi)涵?教學(xué)重點:?導(dǎo)數(shù)概念的實際背景,導(dǎo)數(shù)的思想及其內(nèi)涵變化率問題34()3Vrr??問題1氣球膨脹率33()4VrV??2()4.96.510httt????問題
2024-11-18 12:15
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》瞬時變化率導(dǎo)數(shù)(1)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):1.理解并掌握曲線在某一點處的切線的概念;2.理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法;3.理解切線概念的實際背景,培養(yǎng)學(xué)生解決實際問題的能力和培養(yǎng)學(xué)生轉(zhuǎn)化問題的能力及數(shù)形結(jié)合思想.
2024-12-05 06:44
【總結(jié)】常見函數(shù)的導(dǎo)數(shù)(2)一、復(fù)習(xí)公式一:=0(C為常數(shù))C?公式二:)()(1是常數(shù)???????xx公式三:公式四:xxcos)(sin??xxsin)(cos???公式五:指數(shù)函數(shù)的導(dǎo)數(shù)(2)().xxee??(1)()ln(0,1)
2024-11-19 13:11
【總結(jié)】鹽城市時楊中學(xué)2021年達(dá)標(biāo)課教學(xué)簡案學(xué)科數(shù)學(xué)授課教師張發(fā)軍授課班級高二(7)教學(xué)內(nèi)容雙曲線的幾何性質(zhì)(2)課型新授課課題:雙曲線的幾何性質(zhì)(2)一、三維目標(biāo):1、知識與技能:使學(xué)生掌握雙曲線的如下性質(zhì):對稱性、截距、頂點、軸、中心、離心率和準(zhǔn)線。使學(xué)生能夠根據(jù)雙曲線的漸近線、確定雙曲線的范
2024-12-08 07:53