【總結(jié)】雙曲線及其標準方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的復習|M
2024-11-19 16:21
【總結(jié)】1、求函數(shù)在某點的切線方程2、判斷單調(diào)性、求單調(diào)區(qū)間3、求函數(shù)的極值4、求函數(shù)的最值…導數(shù)主要有哪些方面的應(yīng)用?應(yīng)用一、判斷單調(diào)性、求單調(diào)區(qū)間函數(shù)的導數(shù)與函數(shù)的單調(diào)性之間的關(guān)系?判斷函數(shù)單調(diào)性的常用方法:(1)定義法(2)導數(shù)法1)如果在某區(qū)
2024-11-18 08:56
【總結(jié)】復習::到兩定點F1、F2的距離之和為常數(shù)(大于|F1F2|)的動點的軌跡叫做橢圓。:a,b,c的關(guān)系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當焦點在X軸上時當焦點在Y軸上時)0(12222????babyax)0(12222????
2024-11-18 08:57
【總結(jié)】洪澤外國語中學程懷宏如何精確地設(shè)計、制作、建造出現(xiàn)實生活中這些橢圓形的物件呢?生活中的橢圓一.問題情境?動畫演示:“神六”飛行注意:橢圓定義中容易遺漏的三處地方:(1)必須在平面內(nèi).(2)兩個定點---兩點間距離確定.(3)繩長--軌跡上任意點到兩定點
【總結(jié)】關(guān)于x軸、y軸、原點對稱圖形方程范圍對稱性頂點離心率)0(1????babyax2222A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)),b(abxay001????2222Rxayay????,或關(guān)于x軸、y軸、原點對稱)1
2024-11-17 17:10
【總結(jié)】第2章——圓錐曲線的統(tǒng)一定義[學習目標].際問題.1預(yù)習導學挑戰(zhàn)自我,點點落實2課堂講義重點難點,個個擊破3當堂檢測當堂訓練,體驗成功[知識鏈接]?答:1e.M到一個定點F的距離與到一條定直線l的距離乊比為
2024-11-17 23:19
【總結(jié)】第2章——求曲線的方程[學習目標],熟悉求曲線方程的五個步驟..1預(yù)習導學挑戓自我,點點落實2課堂講義重點難點,個個擊破3當堂檢測當堂訓練,體驗成功[知識鏈接]求曲線方程要“建立適當?shù)淖鴺讼怠保@句話怎樣理解.答
2024-11-18 08:08
【總結(jié)】第2章——雙曲線雙曲線的標準方程[學習目標]...1預(yù)習導學挑戓自我,點點落實2課堂講義重點難點,個個擊破3當堂檢測當堂訓練,體驗成功[知識鏈接],能否將雙曲線定義中“動點M到兩定點F1、F2距離之差的絕
【總結(jié)】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學圓錐曲線的共同性質(zhì)課后知能檢測蘇教版選修1-1一、填空題1.若橢圓x225+y29=1上的點P到左焦點的距離為6,則點P到右準線的距離為________.【解析】∵?????PF1+PF2=10PF1=6,∴PF2=4,
2024-12-04 20:01
【總結(jié)】第2章——拋物線拋物線的標準方程[學習目標]...1預(yù)習導學挑戓自我,點點落實2課堂講義重點難點,個個擊破3當堂檢測當堂訓練,體驗成功[知識鏈接]F若在定直線l上,動點軌跡還是拋物線嗎?答:丌是
2024-11-17 23:13
【總結(jié)】第2章——拋物線的幾何性質(zhì)[學習目標].問題.1預(yù)習導學挑戓自我,點點落實2課堂講義重點難點,個個擊破3當堂檢測當堂訓練,體驗成功[知識鏈接]類比橢圓、雙曲線的幾何性質(zhì),結(jié)合圖象,說出拋物線y2=2px(p
【總結(jié)】第2章——曲線與方程曲線與方程[學習目標].C的方程是f(x,y)=0的方法和步驟.1預(yù)習導學挑戓自我,點點落實2課堂講義重點難點,個個擊破3當堂檢測當堂訓練,體驗成功[知識鏈接]y=x上仸一點M到兩坐標軸距離相等
【總結(jié)】第2章——雙曲線的幾何性質(zhì)[學習目標],如范圍、對稱性、頂點、漸近線和離心率等...1預(yù)習導學挑戓自我,點點落實2課堂講義重點難點,個個擊破3當堂檢測當堂訓練,體驗成功[知識鏈接]類比橢圓的幾何性質(zhì),結(jié)合圖象,
【總結(jié)】第二章圓錐曲線與方程第1課時圓錐曲線教學目標:,經(jīng)歷從具體情境中抽象出橢圓模型的過程,掌握它的定義;,感受、了解雙曲線、拋物線的定義.教學重點:用平面截圓錐面,了解與掌握橢圓、雙曲線、拋物線的定義教學難點:用平面截圓錐面教學過程:Ⅰ.問題情境一個平面截一個圓錐面,當平面經(jīng)過
2024-11-19 20:38
【總結(jié)】圓錐曲線同步練習一、選擇題(每題3分,共30分)?!鰽BC的頂點B、C在橢圓x23+y2=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是(c)(A)23(B)6(C)43(D)1222
2024-11-15 11:50