【總結(jié)】1.立體幾何初步(1)空間幾何體①認識柱、錐、臺、球及其簡單組合體的結(jié)構(gòu)特征,并能運用這些特征描述現(xiàn)實生活中簡單物體的結(jié)構(gòu).②能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會用斜二測法畫出它們的直觀圖.③會用平行投影與中心
2025-06-16 12:13
【總結(jié)】立體幾何大題練習(xí)(文科):1.如圖,在四棱錐S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,側(cè)面SAD⊥底面ABCD.(1)求證:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱錐S﹣BCD的體積為,求側(cè)面△SAB的面積.【分析】(1)由梯形ABCD,設(shè)BC=a,則CD=a,AB=2a,運用
2025-07-24 12:10
【總結(jié)】第一篇:立體幾何易錯題分析 立體幾何易錯題分析 ,P、Q、R、S分別是所在棱的中點,這四個點不共面的一個圖是() A正解:D 錯因:,b是異面直線,P是不在a,b上的任意一點,下列四個結(jié)論:(...
2024-11-15 05:57
【總結(jié)】立體幾何專題之三垂線定理北京大學(xué)光華管理學(xué)院何洋寫在前面的話?高三同學(xué)在對立體幾何的基本知識進行了系統(tǒng)的復(fù)習(xí)之后,對于比較重要的定理、概念以及在學(xué)習(xí)過程中感到難于掌握的問題進行綜合性的專題復(fù)習(xí)是很必要的。在專題復(fù)習(xí)中應(yīng)通過分類、總結(jié),提高對所學(xué)內(nèi)容的認識和理解。今天我和大家共同探討高中立體幾何中的三垂線問題。寫在前面的
2025-05-07 12:06
【總結(jié)】立體幾何專題復(fù)習(xí)一、【知識總結(jié)】基本圖形1.棱柱——有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱。①②四棱柱底面為平行四邊形平行六面體側(cè)棱垂直于底面直平行六面體底面為矩形長方體底面為正方形正四棱柱側(cè)棱與底面邊長相等正方體
2025-03-25 06:44
【總結(jié)】精品資源立體幾何復(fù)習(xí)易做易錯題選如皋市教育局教研室一、選擇題:1.(石莊中學(xué))設(shè)ABCD是空間四邊形,E,F(xiàn)分別是AB,CD的中點,則滿足()A共線B共面C不共面D可作為空間基向量正確答案:B錯因:學(xué)生把向量看為直線。2.(石莊中學(xué))在正方體ABCD-ABCD,O是底面ABCD的中心,M、N分別是棱DD、DC的中點
【總結(jié)】第一篇:立體幾何的證明方法 立體幾何的證明方法 1.線面平行的證明方法 2.兩線平行的證明方法 7、空間平行、垂直之間的轉(zhuǎn)化與聯(lián)系: 應(yīng)用判定定理時,注意由“低維”到“高維”:“線線...
2024-11-15 05:58
【總結(jié)】第一篇:立體幾何垂直證明范文 立體幾何專題----垂直證明 學(xué)習(xí)內(nèi)容:線面垂直面面垂直 立體幾何中證明線面垂直或面面垂直都可轉(zhuǎn)化為線線垂直,而證明線線垂直一般有以下的一些方法:(1)通過“平移”...
2025-10-05 07:25
【總結(jié)】第一篇:立體幾何線面平行問題 線線問題及線面平行問題 一、知識點11)相交——有且只有一個公共點;(2)平行——在同一平面內(nèi),沒有公共點;(3)異面——不在任何一個平面內(nèi),沒有公共點;.. :推...
2024-11-09 12:02
【總結(jié)】立體幾何選填題一、選擇題1.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A.B.C.D.2.設(shè),是兩個不同的平面,,是兩條不同的直線,且,()A.若,則B.若,則C.若,則D.若,則3.如下圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是
2025-08-05 10:01
【總結(jié)】立體幾何二面角,在長方體1111CDCD?????中,11???,D2????,?、F分別是??、C?的中點.證明1、1C、F、?四點共面,并求直線1CD與平面11CF??所成的角的大小.2.如題(19)圖,三棱錐PABC?中,
2024-11-24 15:52
【總結(jié)】秭歸縣屈原高中張鴻斌專題立幾問題的向量解法高考復(fù)習(xí)建議傳統(tǒng)的立幾問題是用立幾的公理和定理通過從“形”到“式”的邏輯推理,解決線與線、線與面、面與面的位置關(guān)系以及幾何體的有關(guān)問題,常需作輔助線,但有時卻不易作出,而空間向量解立幾問題則體現(xiàn)了“數(shù)”與“形”的結(jié)合,通過向量的代數(shù)計算解決問題,無須添加輔助線。用空間向量解立幾問題
2024-11-09 12:27
【總結(jié)】第三章空間向量與立體幾何人教A版數(shù)學(xué)第三章空間向量與立體幾何人教A版數(shù)學(xué)第三章空間向量與立體幾何人教A版數(shù)學(xué)1.知識與技能掌握空間向量的數(shù)乘運算.理解共線向量,直線的方向向量和共面向量.2.過程與方法
2025-10-07 20:16
【總結(jié)】常規(guī)幾何圖形的立體幾何問題1.如圖,在長方體中,點在棱的延長線上,且.BEADC(Ⅰ)求證:∥平面;(Ⅱ)求證:平面平面;(Ⅲ)求四面體的體積.ABCPD,在四棱錐中,平面平面,,是等邊三角形,已知,.(1)求證:平面;(2)求三棱錐的體積.3.如圖,四棱錐
2025-04-17 08:18
【總結(jié)】立體幾何垂直關(guān)系專題高考中立體幾何解答題中垂直關(guān)系的基本題型是:證明空間線面垂直需注意以下幾點:①由已知想性質(zhì),由求證想判定,即分析法與綜合法相結(jié)合尋找證題思路。②立體幾何論證題的解答中,利用題設(shè)條件的性質(zhì)適當(dāng)添加輔助線(或面或輔助體)是解題的常用方法之一。③明確何時應(yīng)用判定定理,何時應(yīng)用性質(zhì)定理,用定理時要先申明條件再由定理得出相應(yīng)結(jié)論。④三垂線定理及其逆定理在高考題中
2025-03-25 06:43