freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

歐式期權(quán)定價(jià)(編輯修改稿)

2025-01-28 10:22 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 t t y r t t ut y tt r t q tr t tTTt r q d t r d???????? ? ? ? ? ? ?? ? ???? ? ? ? ? ? ?????? ? ?? ? ? ???????????? ? ???????令得原方程可化為 ? ?? ? ? ?2 22202tt T t Ttuuytyu Ve y K?????? ?????????? ? ? ???2,再作變換消去 ,取 ? ?2 t?? ? ? ?? ?? ?? ?2022220?102 ?tTTtduuyyT t dtu y K?? ? ? ? ???????? ?????? ????????????3,應(yīng)用 BlackScholes公式(其中 )得 ?1 , 0 , ,r T T t??? ? ? ?? ? ? ? ? ?? ?12121,1?ln2??u y y N d K N dyTKdTd d T??????????? ? ?其 中4,代回到原變量得到歐式看漲期權(quán)的定價(jià)公式 ? ?? ? ? ?? ? ? ?? ?? ?? ?? ?? ? ? ?? ?? ?? ?1212212221,ln2TTttttq d r dTtTtTtV S t e Se N d K N dSe N d K e N dSr q dKddd d d??? ? ? ???? ? ?? ? ?? ? ????????????????? ? ???????????其 中(三)看漲 — 看跌平價(jià)公式 定理 :設(shè) , 分別全具有相同敲定價(jià) K,到期日 T的歐式看漲與看跌期權(quán)的定價(jià),其中無(wú)風(fēng)險(xiǎn)利率 r=r(t),紅利率 q=q(t),波動(dòng)率 ,則看漲 — 看跌平價(jià)公式為 ? ?,c S t? ?,p S t ? ?t??? ? ? ? ? ? ? ? ?, TTttr d q dc S t K e p S t Se? ? ? ?????? ? ?? ? ? ? ? ?? ? ? ? ? ?P r , , ,oof W S t c S t p S tW S T S K K S S K????? ? ? ? ? ?令所以, W是下面定解問(wèn)題的解 ? ? ? ? ? ?? ? ? ?? ?2 222 02,0tTtW W WS r t q t S r t Wt S SW S K S??? ? ? ?? ? ? ? ??? ? ??? ? ? ? ? ??設(shè) ? ? ? ?W a t S b t K??是方程的解,把 W代入方程 ,得 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ?? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ?? ? ? ?? ?? ?? ?? ?? ? ? ? ? ? ? ?? ? ? ?00,0,0,1,TTttTTttq d r dq d r da t S b t K r t q t Sa t r t a t S b t Ka t r t q t a t r t a t S b t b t r t Ka t b ta t r t q t a t r t a tb t b t r ta T b Ta t e b t ec S t p S t a t S b t K Se K e? ? ? ?? ? ? ??????? ? ? ? ? ? ?? ? ? ?? ? ? ???? ? ? ? ? ? ?? ? ? ?? ? ? ?? ? ? ? ? ???????? ?????????????? ? ? ? ? ?取 使 得解 之 得?(四)歐式看跌期權(quán)定價(jià)公式 ? ?? ?? ?? ?? ?? ? ? ?? ?? ?? ?21212221,ln2TTttr d q dTtTtTtV S t K e N d Se N dSr q dKddd d d? ? ? ???? ? ?? ? ?? ? ?????? ? ? ???? ? ???????????其 中六、 BlackSchole模型的推廣( 2) 兩值期權(quán)與復(fù)合期權(quán) (一)兩值期權(quán)的類型 1,現(xiàn)金或無(wú)值看漲期權(quán) (CONC):在到期日 (t=T),若股票價(jià)格低于敲定價(jià),則合約一文不值,若超過(guò)敲定價(jià),則按合約規(guī)定支付現(xiàn)金 1元。 2,資產(chǎn)或無(wú)值看漲期權(quán) (AONC):在到期日 (t=T),若股票價(jià)格低于敲定價(jià),則合約一文不值,若超過(guò)敲定價(jià),則按合約規(guī)定,支付股價(jià)。 兩值期權(quán)的模型為: ? ?? ? ? ?? ? ? ?? ?222202,1 , 00 , 0tTV V VS r q S rVt S SH S K C O N CVSH S K AO N CxHxx??? ? ? ?? ? ? ? ??? ? ??????? ??? ??????? ???其 中(二)標(biāo)準(zhǔn)期權(quán)與兩值期權(quán)的關(guān)系 考慮具有相同敲定價(jià) K和相同到期日 T的標(biāo)準(zhǔn)期權(quán)和兩值期權(quán),它們的價(jià)格分別記作 V, VC與 VA, 因?yàn)? ? ? ? ? ? ? ? ?? ? ? ?? ? ? ?,ACV S T S K S K H S KSH S K K H S KV S T K V S T?? ? ? ? ?? ? ? ???而 V(S,t), VC(S,t)與 VA(S,t)都適合同樣的 BlackSchole方程,由于定解問(wèn)題是線性的,得:在 {0≤S∞,0 ≤t ≤T}上 ? ? ? ? ? ?, , ,ACS t V S t K V S t??(三) VA 與 VC的關(guān)系 定理 : ? ? ? ?2?, 。 , , 。 ,? 2ACV S t r q SV S t q rr q r ??? ? ?其 中? ? ? ? ? ?? ?? ?? ? ? ? ? ?2222222222P r : , 。 , , , ,02? 2? 021, , ,AACoof V S t r q Su S t u S tu u uS r q S qut S Sr q ru u uS q r S qut S Su S T V S T V S TS?????? ? ?? ? ? ? ? ?? ? ?? ? ?? ? ?? ? ? ? ? ?? ? ???令 有 適 合 方 程令而? ? ? ?? ?? ? ? ?? ? ? ??, , 。 , , 。 ,?, , 。 ,?, 。 , , 。 ,CACACu S t V S t q rV S t r qu S t V S t q rSV S t r q SV S t q r??? ? ??因此,只要求出 VC,則 VA即可由上式求出。 (四) CONC期權(quán)價(jià)格 VC的求解 ? ?? ? ? ?222202,tTV V VS r q S rVt S SV H S K C O N C??? ? ? ?? ? ? ? ??? ? ??? ???1,作變換 ? ? ? ? ? ?? ? ? ?2 2 22, l n11,22, 0 ,xST t xKSH S K H H e H xKV V Vr q rVxxV x H x????? ? ???? ? ? ? ? ?????? ??? ? ?? ? ? ? ?? ??? ? ?? ? ?????類似 BlackScholes公式的推導(dǎo),求解上述方程可得 ? ?2()2, ( )rx r qV x e N???????? ? ??2,換回到原變量 (S,t)得 ? ?? ?? ?? ? ? ?? ?? ?? ?? ?222l n ( )2, 。 , ( )?, 。 , , 。 ,?l n ( )2()l n ( )2()r T tCACq T tq T tSr q T tKV S t r q e NTtV S t r q SV S t q rSq r T tKSe NTtSr q T tKSe NTt????????????? ? ? ????? ? ? ???? ? ? ???? ? ? ? ? ?? ?? ?? ?? ?? ?? ?? ?? ?? ? ? ?22221221, , ,l n ( )2()l n ( )2()l n ( ) l n ( )22,ACq T tr T tq T t r T tV S t V S t K V S tSr q T tKSe NTtSr q T tKK e NTtSe N d K e N dSSr q T t r q T tKKddT t T t????????????? ? ? ?? ? ?? ? ? ???? ? ? ?????? ? ? ? ? ? ? ?????由此可得到求 BlackScholes公式的另一種方法。 七、數(shù)值方法( 1) —— 差分方法 (一)差分方法簡(jiǎn)介 差分方法是通過(guò)用差商代替微商對(duì)方程定解問(wèn)題離散化。常見的形式有 ? ?? ? ? ?? ?? ? ? ?? ?? ? ? ?? ?? ? ? ? ? ?? ?22 2()()()22()fbccf x x f x ffxxxf x f x x ffxxxf x x f x x ffxxxf x x f x f x x ffxxx? ? ? ?? ???? ? ? ?? ???? ? ? ? ? ?? ???? ? ? ? ? ? ??? ???(向前差商) (向后差商) (中心差商) (二級(jí)中心差商) 其誤差為 ? ? ? ?? ? ? ?? ? ? ?? ? ? ?2222()()()()fbccff x O xxff x O xxff x O xxff x O xx?? ? ? ???? ? ? ???? ? ? ????? ? ? ??差分方程的兩種形式 :顯式差分格式和隱式差分格式 例如下列熱傳導(dǎo)方程初 — 邊值問(wèn)題 ? ? ? ?? ? ? ?2220 , ( 0 , 0)0 , , ( 0 ), 0 , ( 0 )uua x ttxu t g t t Tu x x x?? ??? ? ? ? ? ??????? ? ??? ? ? ? ????首先在區(qū)域 {0≤x∞
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1