【總結(jié)】.F2F1yox.xF1F20y..橢圓、雙曲線的方程(各取一種情況)、性質(zhì)的對(duì)比.橢圓雙曲線幾何條件標(biāo)準(zhǔn)方程頂點(diǎn)坐標(biāo)對(duì)稱軸焦點(diǎn)坐標(biāo)離心率準(zhǔn)線方程漸近線方程與兩個(gè)定點(diǎn)的距離的和等于常數(shù).與兩個(gè)定點(diǎn)的距離的差的絕對(duì)值等于常數(shù).焦點(diǎn)
2024-11-10 22:30
【總結(jié)】雙曲線的性質(zhì)(三)橢圓與直線的位置關(guān)系及判斷方法判斷方法?0(1)聯(lián)立方程組(2)消去一個(gè)未知數(shù)(3)復(fù)習(xí):相離相切相交一:直線與雙曲線位置關(guān)系種類XYO種類:相離;相切;相交(0個(gè)交點(diǎn),一個(gè)交點(diǎn),一個(gè)交點(diǎn)或兩個(gè)交點(diǎn))位置關(guān)系與交
2024-11-18 07:54
【總結(jié)】雙曲線及其標(biāo)準(zhǔn)方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點(diǎn)的軌跡.平面內(nèi)與兩定點(diǎn)F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點(diǎn)的軌跡是什么呢?平面內(nèi)與兩定點(diǎn)F1、F2的距離的復(fù)習(xí)雙曲
2024-11-17 19:31
【總結(jié)】?要點(diǎn)·疑點(diǎn)·考點(diǎn)?課前熱身?能力·思維·方法?延伸·拓展?誤解分析雙曲線要點(diǎn)·疑點(diǎn)·考點(diǎn)(1)雙曲線的第一定義:平面內(nèi)與兩個(gè)定點(diǎn)F1、F2的距離差的絕對(duì)值是常數(shù)(小于|F1F2|)(2)雙
2024-11-18 15:24
【總結(jié)】雙曲線的性質(zhì)(二)關(guān)于x軸、y軸、原點(diǎn)對(duì)稱圖形方程范圍對(duì)稱性頂點(diǎn)離心率yxOA2B2A1B1..F1F2yB2A1A2B1xO..F2F1)0(1????babyax2222bybaxa??????
2024-11-17 13:00
【總結(jié)】第六節(jié)雙曲線基礎(chǔ)梳理1.雙曲線的定義(1)平面內(nèi)動(dòng)點(diǎn)的軌跡是雙曲線必須滿足兩個(gè)條件:①到兩個(gè)定點(diǎn)F1、F2的距離的________等于常數(shù)2a;②2a______|F1F2|.(2)上述雙曲線的焦點(diǎn)是________,焦距是________.2.雙曲線的標(biāo)準(zhǔn)方程和幾何性質(zhì)-標(biāo)準(zhǔn)方程
2024-11-11 05:50
【總結(jié)】雙曲線1.3.4.點(diǎn)P處的切線PT平分△PF1F2在點(diǎn)P處的內(nèi)角.5.PT平分△PF1F2在點(diǎn)P處的內(nèi)角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的軌跡是以實(shí)軸為直徑的圓,除去實(shí)軸的兩個(gè)端點(diǎn).6.以焦點(diǎn)弦PQ為直徑的圓必與對(duì)應(yīng)準(zhǔn)線相交.7.以焦點(diǎn)半徑PF1為直徑的圓必與以實(shí)軸為直徑的圓外切.8.設(shè)P為雙曲線上一點(diǎn),則△PF1F2的內(nèi)切圓必切于
2024-08-14 04:18
【總結(jié)】雙曲線的性質(zhì)(一)祝林華222bac??定義圖象方程焦點(diǎn)的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)12222??bya
2024-08-14 17:23
【總結(jié)】第二講:雙曲線考綱要求:圓錐曲線①了解圓錐曲線的實(shí)際背景,了解圓錐曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用.②掌握橢圓、拋物線的定義、幾何圖形、標(biāo)準(zhǔn)方程及簡(jiǎn)單性質(zhì).③了解雙曲線的定義、幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡(jiǎn)單幾何性質(zhì).④了解圓錐曲線的簡(jiǎn)單應(yīng)用.⑤理解數(shù)形結(jié)合的
2024-11-10 23:01
【總結(jié)】一般地,在直角直角坐標(biāo)系中,如果某曲線C上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解;(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).曲線C上的點(diǎn)的坐標(biāo)構(gòu)成集合為A二元方程f(x,y)=0的解集為BBA?AB?那么這個(gè)方程叫做曲線的方程;
2024-08-25 02:33
【總結(jié)】雙曲線基礎(chǔ)練習(xí)題一、選擇題1.已知a=3,c=5,并且焦點(diǎn)在x軸上,則雙曲線的標(biāo)準(zhǔn)程是()A.B.C.2.已知并且焦點(diǎn)在y軸上,則雙曲線的標(biāo)準(zhǔn)方程是()A.B.C.D.3..雙曲線上P點(diǎn)到左焦點(diǎn)的距離是6,則P到右焦點(diǎn)的距離是()A.12B.14C.16D.
2025-03-26 05:43
【總結(jié)】定義圖象方程焦點(diǎn)系yoxF1F2··yoF1F2··|MF1|+|MF2|=2a(2a|F1F2|)a2=b2+c2
2024-11-19 15:32
【總結(jié)】F2F1M定義曲線方程焦點(diǎn)關(guān)系y·oxF1F2··yoF1F2··|MF1|+|MF2|=2a(2a|F1F2|)a2=b2+c2F(±c,0)
2024-11-06 14:33
【總結(jié)】雙曲線的定義及標(biāo)準(zhǔn)方程[復(fù)習(xí)]1、求曲線方程的步驟一、建立坐標(biāo)系,設(shè)動(dòng)點(diǎn)的坐標(biāo);二、找出動(dòng)點(diǎn)滿足的幾何條件;三、將幾何條件化為代數(shù)條件;四、化簡(jiǎn),得所求方程。2、橢圓的定義到平面上兩定點(diǎn)F1,F(xiàn)2的距離之和(大于|F1F2|)為常數(shù)的點(diǎn)的軌跡3、橢圓的標(biāo)準(zhǔn)方程有幾類?[兩類][思考]到平面上兩定點(diǎn)
【總結(jié)】(1)雙曲線的第一定義:平面內(nèi)與兩個(gè)定點(diǎn)F1、F2的距離差的絕對(duì)值是常數(shù)(小于|F1F2|)的點(diǎn)的軌跡叫做雙曲(2)雙曲線的第二定義:平面內(nèi)到一個(gè)定點(diǎn)F的距離和到一條定直線l的距離比是常數(shù)e(e>1)的點(diǎn)的軌跡叫做2.雙曲線標(biāo)準(zhǔn)方程的兩種形式x2/a2-y2/b2=1,-x2/b2+y2/a2=1(a、b>0)分別
2024-11-10 12:26