【總結(jié)】雙曲線的簡單幾何性質(zhì)練習(xí)Axy43?Cxy43??yx43??DByx43?1、雙曲線9x-16y=144的漸近線方程為:22練習(xí)2、實軸長為10、虛軸長為8、焦點在x軸的雙曲線的標準方程為練習(xí)3、焦距為10、虛軸長為8、焦點在y軸
2025-10-10 13:09
【總結(jié)】導(dǎo)標:首先,請同學(xué)們回憶一下:1、橢圓的定義是什么?2、橢圓的標準方程是什么?3、對應(yīng)的橢圓圖形是怎樣?今天,我們將從橢圓的標準方程出發(fā),借助圖形來探求橢圓的一些幾何性質(zhì)。達標:一、橢圓的范圍oxy由11122222222?????b
2024-11-18 15:24
【總結(jié)】選修1-1雙曲線的幾何性質(zhì)一、選擇題1.已知雙曲線的離心率為2,焦點是(-4,0),(4,0),則雙曲線方程為()24-y212=1B.x212-y24=1210-y26=1D.x26-y210=1[答案]A[解析]∵e=
2024-11-24 22:00
【總結(jié)】關(guān)于x軸、y軸、原點對稱圖形方程范圍對稱性頂點離心率)0(1????babyax2222A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)),b(abxay001????2222Rxayay????,或關(guān)于x軸、y軸、原點對稱)1
2024-11-17 17:10
【總結(jié)】●教學(xué)目標、實虛半軸、焦點、離心率、漸近線方程.●教學(xué)重點雙曲線的幾何性質(zhì)●教學(xué)難點雙曲線的漸近線●教學(xué)方法學(xué)導(dǎo)式●教具準備幻燈片、三角板●教學(xué)過程:師:上一節(jié),我們學(xué)習(xí)了雙曲
2024-12-08 01:51
【總結(jié)】【課堂新坐標】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)雙曲線的幾何性質(zhì)課后知能檢測蘇教版選修2-1一、填空題1.(20212江蘇高考)雙曲線x216-y29=1的兩條漸近線的方程為________.【解析】由雙曲線方程可知a=4,b=3,所以兩條漸近線方程為y=±34
2024-12-05 09:29
【總結(jié)】雙曲線的簡單幾何性質(zhì)(2)關(guān)于x軸、y軸、原點對稱圖形方程范圍對稱性頂點離心率A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)關(guān)于x軸、y軸、原點對稱漸進線..yB2A1A2B1xOF2F1xB1y
2025-11-01 08:36
【總結(jié)】雙曲線的性質(zhì)(一)222bac??定義圖象方程焦點的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)12222??byax12
2024-11-18 08:47
【總結(jié)】鹽城市時楊中學(xué)2021年達標課教學(xué)簡案學(xué)科數(shù)學(xué)授課教師張發(fā)軍授課班級高二(7)教學(xué)內(nèi)容雙曲線的幾何性質(zhì)(2)課型新授課課題:雙曲線的幾何性質(zhì)(2)一、三維目標:1、知識與技能:使學(xué)生掌握雙曲線的如下性質(zhì):對稱性、截距、頂點、軸、中心、離心率和準線。使學(xué)生能夠根據(jù)雙曲線的漸近線、確定雙曲線的范
2024-12-08 07:53
【總結(jié)】雙曲線的幾何性質(zhì)濟源三中盧新民一、知識再現(xiàn)前面我們學(xué)習(xí)了橢圓的簡單的幾何性質(zhì):范圍、對稱性、頂點、離心率.我們來共同回顧一下橢圓
2024-11-18 10:03
【總結(jié)】B'C'CBA251213A'xOy雙曲線的簡單幾何性質(zhì)(一)【學(xué)習(xí)目標】掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質(zhì).【自主學(xué)習(xí)】雙曲線的簡單幾何性質(zhì):1.范圍、對稱性2.頂點頂點:??0,),0,(21aAaA?特殊點:
2024-12-05 06:41
【總結(jié)】新課標人教版課件系列《高中數(shù)學(xué)》選修1-1《雙曲線的簡單幾何性質(zhì)》教學(xué)目標?知識與技能目標?了解平面解析幾何研究的主要問題:(1)根據(jù)條件,求出表示曲線的方程;(2)通過方程,研究曲線的性質(zhì).理解雙曲線的范圍、對稱性及對稱軸,對稱中心、離心率、頂點、漸近線的概念;掌握雙曲線的標準方程、會用雙曲線的定義解決實際
2024-11-30 12:26
【總結(jié)】復(fù)習(xí):、焦點、焦距、兩種情形的標準方程。雙曲線定義:平面內(nèi)與兩個定點、的距離的差的絕對值等于常數(shù)(小于)的點的軌跡叫做雙曲線。這兩個定點叫做雙曲線的焦點,兩焦點的距離叫雙曲線的焦距。1F2F21||FF若焦點在x軸上,雙曲線的標準方程為:22
2024-11-19 18:48
【總結(jié)】知識回顧:平面內(nèi)到兩定點F1、F2的距離之差的絕對值是定值2a(大于0且小于|F1F2|)的點的軌跡叫做雙曲線。)0(,2||M||M||21caaFF????)0,0(12222????babyax:當焦點在X軸上時)00(12222????babxay,當焦點在Y軸上
2024-11-22 00:05
【總結(jié)】雙曲線方程和性質(zhì)應(yīng)用xyoax?或ax??ay??ay?或)0,(a?),0(a?xaby??xbay??ace?)(222bac??其中關(guān)于坐標軸和原點都對稱性質(zhì)雙曲線)0,0(12222??
2024-11-12 17:25