【總結(jié)】雙曲線的性質(zhì)(三)橢圓與直線的位置關(guān)系及判斷方法判斷方法?0(1)聯(lián)立方程組(2)消去一個未知數(shù)(3)復習:相離相切相交一:直線與雙曲線位置關(guān)系種類XYO種類:相離;相切;相交(0個交點,一個交點,一個交點或兩個交點)位置關(guān)系與交
2024-11-18 07:54
【總結(jié)】雙曲線及其標準方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的復習雙曲
2024-11-17 19:31
【總結(jié)】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析雙曲線要點·疑點·考點(1)雙曲線的第一定義:平面內(nèi)與兩個定點F1、F2的距離差的絕對值是常數(shù)(小于|F1F2|)(2)雙
2024-11-18 15:24
【總結(jié)】雙曲線的性質(zhì)(二)關(guān)于x軸、y軸、原點對稱圖形方程范圍對稱性頂點離心率yxOA2B2A1B1..F1F2yB2A1A2B1xO..F2F1)0(1????babyax2222bybaxa??????
2024-11-17 13:00
【總結(jié)】第六節(jié)雙曲線基礎(chǔ)梳理1.雙曲線的定義(1)平面內(nèi)動點的軌跡是雙曲線必須滿足兩個條件:①到兩個定點F1、F2的距離的________等于常數(shù)2a;②2a______|F1F2|.(2)上述雙曲線的焦點是________,焦距是________.2.雙曲線的標準方程和幾何性質(zhì)-標準方程
2024-11-11 05:50
【總結(jié)】雙曲線的性質(zhì)(一)祝林華222bac??定義圖象方程焦點的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)12222??bya
2024-08-14 17:23
【總結(jié)】第二講:雙曲線考綱要求:圓錐曲線①了解圓錐曲線的實際背景,了解圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用.②掌握橢圓、拋物線的定義、幾何圖形、標準方程及簡單性質(zhì).③了解雙曲線的定義、幾何圖形和標準方程,知道它的簡單幾何性質(zhì).④了解圓錐曲線的簡單應用.⑤理解數(shù)形結(jié)合的
2024-11-10 23:01
【總結(jié)】一般地,在直角直角坐標系中,如果某曲線C上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:(1)曲線上的點的坐標都是這個方程的解;(2)以這個方程的解為坐標的點都是曲線上的點.曲線C上的點的坐標構(gòu)成集合為A二元方程f(x,y)=0的解集為BBA?AB?那么這個方程叫做曲線的方程;
2024-08-25 02:33
【總結(jié)】雙曲線基礎(chǔ)練習題一、選擇題1.已知a=3,c=5,并且焦點在x軸上,則雙曲線的標準程是()A.B.C.2.已知并且焦點在y軸上,則雙曲線的標準方程是()A.B.C.D.3..雙曲線上P點到左焦點的距離是6,則P到右焦點的距離是()A.12B.14C.16D.
2025-03-26 05:43
【總結(jié)】定義圖象方程焦點系yoxF1F2··yoF1F2··|MF1|+|MF2|=2a(2a|F1F2|)a2=b2+c2
2024-11-19 15:32
【總結(jié)】F2F1M定義曲線方程焦點關(guān)系y·oxF1F2··yoF1F2··|MF1|+|MF2|=2a(2a|F1F2|)a2=b2+c2F(±c,0)
2024-11-06 14:33
【總結(jié)】雙曲線的定義及標準方程[復習]1、求曲線方程的步驟一、建立坐標系,設動點的坐標;二、找出動點滿足的幾何條件;三、將幾何條件化為代數(shù)條件;四、化簡,得所求方程。2、橢圓的定義到平面上兩定點F1,F(xiàn)2的距離之和(大于|F1F2|)為常數(shù)的點的軌跡3、橢圓的標準方程有幾類?[兩類][思考]到平面上兩定點
【總結(jié)】(1)雙曲線的第一定義:平面內(nèi)與兩個定點F1、F2的距離差的絕對值是常數(shù)(小于|F1F2|)的點的軌跡叫做雙曲(2)雙曲線的第二定義:平面內(nèi)到一個定點F的距離和到一條定直線l的距離比是常數(shù)e(e>1)的點的軌跡叫做2.雙曲線標準方程的兩種形式x2/a2-y2/b2=1,-x2/b2+y2/a2=1(a、b>0)分別
2024-11-10 12:26
【總結(jié)】求曲線方程(3)[例1]在△ABC中,已知頂點A(1,1),B(3,6)且△ABC的面積等于3,求頂點C的軌跡方程.解:設頂點C的坐標為(x,y),作CH⊥AB于H,則動點C屬于集合P={C|}321??CHAB∵kAB=
2024-11-09 03:30
【總結(jié)】雙曲線的簡單幾何性質(zhì)(二)復習與回顧方程圖形頂點對稱范圍焦點離心率漸近線yox)0,(12222???babyax)0,(12222????baaybx)1(??eacexaby??xbay??xyo(±
2024-08-14 04:08