【總結(jié)】【課標(biāo)要求】1.了解導(dǎo)數(shù)的概念;理解導(dǎo)數(shù)的幾何意義.2.會求導(dǎo)數(shù).3.根據(jù)導(dǎo)數(shù)的幾何意義,會求曲線上某點處的切線方程.【核心掃描】1.利用導(dǎo)數(shù)的幾何意義求曲線在某點處的切線方程.(重點)2.準(zhǔn)確理解在某點處與過某點的切線方程.(易混點)自學(xué)導(dǎo)引1.切線:如圖,當(dāng)點
2025-07-21 21:55
【總結(jié)】NetworkOptimizationExpertTeam知識的超市,生命的狂歡1、課本、導(dǎo)學(xué)案、非常學(xué)案、練習(xí)本、雙色筆2、分析錯因,自糾學(xué)案3、標(biāo)記疑難,以備討論NetworkOptimizationExpertTeam知識的超市,生命的狂歡度?等于這段時間的平均速在什么時刻的瞬時速度)質(zhì)點(的平均速度;這段時間內(nèi)質(zhì)
2024-11-03 20:18
【總結(jié)】實數(shù)集的一些性質(zhì)和特點:(1)實數(shù)可以判定相等或不相等;(2)不相等的實數(shù)可以比較大??;(3)實數(shù)可以用數(shù)軸上的點表示;(4)實數(shù)可以進行四則運算;(5)負(fù)實數(shù)不能進行開偶次方根運算;……(1)實數(shù)集原有的有關(guān)性質(zhì)和特點能否推廣到復(fù)數(shù)集?(2)從復(fù)數(shù)的特點出發(fā),尋找復(fù)數(shù)集新的(實數(shù)集
2024-11-17 17:10
【總結(jié)】復(fù)數(shù)的幾何意義知識回顧實部:通常用字母z表示,即biaz??),(RbRa??虛部其中稱為虛數(shù)單位。i(,)zabiabR???復(fù)數(shù):??????????00ba,非純虛數(shù)??00b
2024-11-19 13:12
【總結(jié)】§知識回顧平均變化率函數(shù)y=f(x)的定義域為D,∈D,f(x)從x1到x2平均變化率為:1212)()(xxxfxfxy?????瞬時變化率當(dāng)趨于0時,平均變化率就趨于函數(shù)在點的瞬時變化率,瞬時變化率刻畫的是函數(shù)在一點處變化的快慢x?0x平均變化率刻
2025-09-20 19:15
【總結(jié)】復(fù)數(shù)的幾何意義課時目標(biāo)、向量的對應(yīng)關(guān)系.復(fù)數(shù)加減法的幾何意義及應(yīng)用..1.復(fù)平面的定義建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做________,y軸叫做________,實軸上的點都表示實數(shù),除________外,虛軸上的點都表示純虛數(shù).2.復(fù)數(shù)與點、向量間的對應(yīng)在復(fù)平面內(nèi),復(fù)數(shù)z=a+b
2024-12-05 09:31
【總結(jié)】幾何意義1高二數(shù)學(xué)選修1-1第三章導(dǎo)數(shù)及其應(yīng)用??????xxfxxflimxylimxf0x0x0?????????00-+==即:????000xxyfxxxfxy??=函數(shù)=在=處的導(dǎo)數(shù),記作:或???
2025-07-25 18:39
【總結(jié)】復(fù)數(shù)與平行四邊形家族菱形、矩形、正方形等特殊的平面幾何圖形與某些復(fù)數(shù)式之間存在某種聯(lián)系及相互轉(zhuǎn)化的途徑.在求解復(fù)數(shù)問題時,若能善于觀察條件中給定的或者是通過推理所得的復(fù)數(shù)形式的結(jié)構(gòu)特征,往往能獲得簡捷明快的解決方法.下面列舉幾例,以供參考.一、復(fù)數(shù)式與矩形的轉(zhuǎn)化例1已知復(fù)數(shù)12zz,滿足171z??,271z??,且1
2024-11-20 00:26
【總結(jié)】向量減法運算及其幾何意義問題提出個向量的和向量分別如何操作?abaabba+ba+b?a+0=0+a=aa與b為相反向量a+b=0a+b=b+a(a+b)+c=a+(b+c)|a+b|≤|a|+|b||a+b|≥||a|-|b||112
2024-11-12 17:26
【總結(jié)】平面向量的線性運算向量加法運算及其幾何意義問題提出、平行向量、相等向量的含義分別是什么?,向量的大小和方向是如何反映的?什么叫零向量和單位向量?,從而給數(shù)賦予了新的內(nèi)涵.如果向量僅停留在概念的層面上,那是沒有多大意義的.我們希望兩個向量也能相加,拓展向量的數(shù)學(xué)意義,提升向量的理論價值,這就需要建立相關(guān)的原理和法則
2024-11-12 16:45
【總結(jié)】最大值與最小值一般地,設(shè)函數(shù)y=f(x)在x=x0及其附近有定義,如果f(x0)的值比x0附近所有各點的函數(shù)值都大,我們就說f(x0)是函數(shù)的一個極大值,記作y極大值=f(x0),x0是極大值點。如果f(x0)的值比x0附近所有各點的函數(shù)值都小,我們就說f(x0)是函數(shù)的一個極小值。記作y極小值=f(x0),x0是極小值點。極大
2024-11-17 23:31
【總結(jié)】選修1-2導(dǎo)數(shù)的幾何意義一、選擇題1.曲線y=x2在x=0處的()A.切線斜率為1B.切線方程為y=2xC.沒有切線D.切線方程為y=0[答案]D[解析]k=y(tǒng)′=limΔx→0(0+Δx)2-02Δx=limΔx→0Δx=0,所以k=0,又y=x
2024-11-24 22:43
【總結(jié)】復(fù)數(shù)的幾何意義習(xí)題課課時目標(biāo).,復(fù)數(shù)的模的概念..1.復(fù)數(shù)相等的條件:a+bi=c+di?____________(a,b,c,d∈R).2.復(fù)數(shù)z=a+bi(a,b∈R)對應(yīng)向量OZ→,復(fù)數(shù)z的模|z|=|OZ→|=__________.3.復(fù)數(shù)z=a+bi(a,b∈R)的模|
【總結(jié)】向量數(shù)乘運算及其幾何意義問題提出、差向量?算,如3+3+3+3+3=5×3=等的幾個向量相加是否也能轉(zhuǎn)化為數(shù)乘運算呢?這需要從理論上進行探究.abaabba+ba-b探究一:向量的數(shù)乘運算及其幾何意義思考1:已知非零向量a,如何求作向量a+a+a和(-a)+(-
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修4《向量加法運算及其幾何意義》教學(xué)目標(biāo)?掌握向量的加法運算,并理解其幾何意義;?會用向量加法的三角形法則和平行四邊形法則作兩個向量的和向量,培養(yǎng)數(shù)形結(jié)合解決問題的能力;?通過將向量運算與熟悉的數(shù)的運算進行類比,使學(xué)生掌握向量加法運算的交換律和結(jié)合律,并會用