【總結(jié)】第一篇:勾股定理的應(yīng)用說課稿 《勾股定理的應(yīng)用》說課稿 : 本課是華師大版八年級(上)數(shù)學(xué)第14章第二節(jié)內(nèi)容,,,通過實際分析,使學(xué)生獲得較為直觀的印象,通過聯(lián)系和比較,,制定教學(xué)目標如下:1....
2025-10-26 18:06
【總結(jié)】逆定理(一)勾股定理如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2學(xué)習(xí)目標1、探究并證明勾股定的逆定理,并能運用勾股定理的逆定理判斷一個三角形是否是直角三角形;2、了解原命題、逆命題、原定理、逆定理、勾股數(shù)的概念,并了解原命題是真命題,它的逆命題不一定是真命題。
2024-11-21 05:35
【總結(jié)】讀一讀:勾股定理,我們把它稱為世界第一定理。它的重要性,通過這一章的學(xué)習(xí)已深有體驗。首先,勾股定理是數(shù)形結(jié)合的最典型的代表。其次,了解勾股定理歷史的同學(xué)知道,正是由于勾股定理的發(fā)現(xiàn),導(dǎo)致無理數(shù)的發(fā)現(xiàn),引發(fā)了數(shù)學(xué)的第一次危機。勾股定理中的公式是第一個不定方程,有許許多多的數(shù)滿足這個方程,也是有完整解答的最早的不定方程,由此由它引導(dǎo)出各式各樣的不
2025-10-28 19:33
【總結(jié)】探索勾股定理(第1課時)學(xué)習(xí)目標?1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進一步發(fā)展學(xué)生的合情推理意識,主動探究的習(xí)慣,進一步體會數(shù)學(xué)與現(xiàn)實生活的緊密聯(lián)系。?2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進一步發(fā)展學(xué)生的說理和簡單推理的意識及能力。一、情境引入會標中央的圖案是趙爽弦圖,
2024-11-23 11:58
【總結(jié)】勾股定理的逆定理人教版數(shù)學(xué)八年級下冊.重點、互逆定理難點3.能靈活運用勾股定理的逆定理解決實際問題.重點學(xué)習(xí)目標(1)在Rt△ABC,∠C=90°,a=8,b=15,則c=.(2)在Rt△ABC,∠B=90
2025-07-18 12:59
【總結(jié)】第2課時勾股定理的逆定理的應(yīng)用滬科版·八年級數(shù)學(xué)下冊狀元成才路狀元成才路新課導(dǎo)入例2已知:在△ABC中,三條邊長分別為a=n2–1,b=2n,c=n2+1(n>1).求證:△ABC為直角三角形.狀元成才路狀元成才路新課探究
2025-03-12 12:44
【總結(jié)】第一篇:勾股定理的證明及應(yīng)用 勾股定理的證明及應(yīng)用 【重點】: 學(xué)習(xí)勾股定理的文化背景,欣賞歷史上經(jīng)典的勾股定理證明方法,體會其蘊含的創(chuàng)新思維,初步運用勾股定理分析處理具體問題 【難點】: ...
2025-10-26 17:50
【總結(jié)】第一篇:勾股定理的應(yīng)用教學(xué)設(shè)計 備課人:閆治春【教學(xué)目標】 ,體會圖形間的變化關(guān)系,發(fā)展空間觀念。,認識勾股定理的廣泛應(yīng)用,培養(yǎng)學(xué)生解決問題的能力?!窘虒W(xué)重點】 探索、發(fā)現(xiàn)給定事物中隱含的勾...
2025-10-24 05:57
【總結(jié)】勾股定理的應(yīng)用1——圖形的翻折的導(dǎo)學(xué)案一、直角三角形的折疊問題展示直角三角形紙片1.已知△ABC中,∠B=90°,AB=4,BC=3,則AC=斜邊AC邊上的高AD=折疊1:將△ABC折疊,使點A與B重合(如圖1),則圖中有哪些相等的線段?求BD折疊2:將△ABC折疊,使點A與C重合(如圖2),(1
2025-06-22 03:47
【總結(jié)】第一篇: 勾股定理的應(yīng)用 執(zhí)筆人: 審核:八年級數(shù)學(xué)組課型:新授時間: 1、知識與方法目標:通過對一些典型題目的思考、練習(xí),能正確、熟練的進行勾股定理有關(guān)計算,深入對勾股定理的理解。 2、過...
2024-11-18 22:10
【總結(jié)】第一篇:勾股定理的應(yīng)用的教學(xué)反思 勾股定理的應(yīng)用的教學(xué)反思 勾股定理的應(yīng)用的教學(xué)反思 本節(jié)課是人教版數(shù)學(xué)八年級下冊第十七章第一節(jié)第二課時的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識,了解了直角三角形的...
2025-10-26 18:25
【總結(jié)】勾股定理及其逆定理的應(yīng)用常見題型利用勾股定理求線段長1.如圖,在等腰直角三角形ABC中,∠ABC=90°,D為AC邊的中點,過D點作DE⊥DF,交AB于E,交BC于F,若AE=4,F(xiàn)C=3,求EF的長.(注:直角三角形斜邊上的中線等于斜邊的一半)利用勾股定理求面積2.如圖,長方形紙片ABCD沿對角線AC折疊,設(shè)點D落在D′處,BC交AD′于點
2025-03-24 12:59
【總結(jié)】活動1問題1:小紅和小軍周日去郊外放風(fēng)箏,風(fēng)箏飛得又高又遠,他倆很想知道風(fēng)箏離地面到底有多高,你能幫助他們嗎?問題2:如下圖所示是一尊雕塑的底座的正面,李叔叔想要檢測正面的AD邊和BC邊是垂直于底邊AB,但他隨身只帶了卷尺(1)你能替他想想辦法完成任務(wù)嗎?(2)李叔叔量得AD的長是30厘米,AB的長
2025-10-28 19:32
【總結(jié)】第2課時勾股定理的應(yīng)用滬科版·八年級數(shù)學(xué)下冊狀元成才路狀元成才路新課導(dǎo)入在Rt△ABC中,∠C=90°,AB=c,BC=a,AC=b.(1)a=6,b=8,求c;(2)a=8,c=17,求b.c=10b=15狀元成才路狀元成
【總結(jié)】勾股定理在生活中的應(yīng)用勾股定理在生活中的應(yīng)用探究新知活動1知識準備1.如圖14-2-1所示,可以看出圓柱的側(cè)面展開圖是____.圖14-2-12.在連結(jié)兩點的線中,____最短.線段長方形勾股定理在生活中的應(yīng)用活動2教材導(dǎo)學(xué)生
2025-11-01 05:04