【總結】HK版七年級下階段核心歸類平行線中常見作輔助線的九種類型第10章相交線、平行線與平移4提示:點擊進入習題答案顯示1235見習題B見習題6見習題見習題見習題7見習題8見習題提示:點擊進入習題答案顯示
2025-03-12 12:18
【總結】專業(yè)資料分享【2013年中考攻略】專題7:幾何輔助線(圖)作法探討一些幾何題的證明或求解,由原圖形分析探究,有時顯得十分復雜,若通過適當?shù)淖儞Q,即添加適當?shù)妮o助線(圖),將原圖形轉換成一個完整的、特殊的、簡單的新圖形,則能使原問題的本質得到充分的顯示,通過對新圖形的分析,原問題順利獲解
2025-05-16 02:07
【總結】輔助線的作法正確熟練地掌握輔助線的作法和規(guī)律,也是迅速解題的關鍵,如何準確地作出需要的輔助線,簡單介紹幾種方法:方法一:從已知出發(fā)作出輔助線:DABCEFMN例1.已知:在△ABC中,AD是BC邊的中線,E是AD的中點,F(xiàn)是BE延長線與AC的交點,求證:AF=分析:題設中含有D是BC中點,E是AD中點,由此可以聯(lián)想到三角形中與邊中點有密切聯(lián)
2025-06-18 13:03
【總結】梯形中的常見輔助線一、平移1、平移一腰:例1.如圖所示,在直角梯形ABCD中,∠A=90°,AB∥DC,AD=15,AB=16,BC=17.求CD的長.例2如圖,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范圍。2、平移兩腰:例3如圖,在梯形ABCD中,AD//BC,∠B+∠C=90
2025-06-22 16:00
【總結】(1)只見顯性中點而看不到隱藏的中點;(2)挖掘出隱藏的中點后,卻不會將各中點條件合理地進行篩選與重組;(3)構造出待證全等三角形后,常常是找邊容易找角難,對于角相等的證明方法過于單一且不夠靈活.1、如圖,在等腰直角三角形ABC中,∠ABC=90°,D為邊AC的中點,過點D作DE⊥DF,交AB于點E,交B
2025-07-26 00:14
【總結】全等三角形作輔助線經(jīng)典例題常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構造全等三角形,利用的思維模式是全等變換中的“旋轉”.3)遇到角平分線,可以自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點
2025-03-24 07:38
【總結】BS版七年級下階段核心歸類平行線中常見作輔助線的技巧的九種類型第二章相交線與平行線4提示:點擊進入習題答案顯示61235見習題見習題見習題C見習題見習題87見習題見習題9見習題1.如圖,∠
【總結】例1:已知如圖1-1:D、E為△ABC內(nèi)兩點,求證:AB+AC>BD+DE+CE.例如:如圖2-1:已知D為△ABC內(nèi)的任一點,求證:∠BDC>∠BAC。分析:因為∠BDC與∠BAC不在同一個三角形中,沒有直接的聯(lián)系,可適當添加輔助線構造新的三角形,使∠BDC處于在外角的位置,∠BAC處于在內(nèi)角的位置;例如:如圖3-1:已知A
2025-07-23 03:37
【總結】輔助線的添加【知識要點】平面幾何是中學數(shù)學的一個重要組成部分,證明是平面幾何的重要內(nèi)容。許多初中生對幾何證明題感到困難,尤其是對需要添加輔助線的證明題,往往束手無策。在這里我們介紹"添加輔助線"在平面幾何中的運用。一、三角形中常見輔助線的添加1.與角平分線有關的ⅰ可向兩邊作垂線。ⅱ可作平行線,構造等腰三角形ⅲ在角的兩邊截取相等的線
2025-04-16 12:57
【總結】梯形中常見輔助線課件制作:王從亮課件審核:田學銀例題精講,在梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,求證:CD=BC-AD.延長兩腰,將梯形轉化成三角形.EDBCA平移一腰,梯形轉化成:平行四邊和三角形.DBCA
2024-11-10 03:18
【總結】五種輔助線助你證全等姚全剛在證明三角形全等時有時需添加輔助線,對學習幾何證明不久的學生而言往往是難點.下面介紹證明全等時常見的五種輔助線,供同學們學習時參考.一、截長補短一般地,當所證結論為線段的和、差關系,且這兩條線段不在同一直線上時,通常可以考慮用截長補短的辦法:或在長線段上截取一部分使之與短線段相等;或將短線段延長使其與長線段相等.例1.如圖1,在△ABC中,∠ABC
2025-06-19 22:43
【總結】200*1504K282*2829K329*24510K295*24610K329*24510K333*2909K365*26710K400*34814K380*29511K
2025-10-01 10:22
【總結】......初中數(shù)學輔助線的添加淺談人們從來就是用自己的聰明才智創(chuàng)造條件解決問題的,當問題的條件不夠時,添加輔助線構成新圖形,形成新關系,使分散的條件集中,建立已知與未知的橋梁,把問題轉化為自己能解決的問題,這是解決問題常用
2025-08-03 00:57
【總結】三角形中的常用輔助線課程解讀一、學習目標:歸納、掌握三角形中的常見輔助線?二、重點、難點:1、全等三角形的常見輔助線的添加方法。2、掌握全等三角形的輔助線的添加方法并提高解決實際問題的能力。?????三、考點分析:全等三角形是初中數(shù)學中的重要內(nèi)容之一,是今后學習其他知識的基礎。判斷三角形全等的公理
2025-04-16 23:10
【總結】第一篇:輔助線幾何證明題 輔助線的幾何證明題 三角形輔助線做法 圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關系現(xiàn)。 角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看...
2024-10-22 20:13