【總結(jié)】平移腰作高補(bǔ)為三角形平移對角線其他方法轉(zhuǎn)化為三角形或平行四邊形等在梯形中常用的作輔助線方法開動腦筋靈活應(yīng)用ABCDEFABCDABCD
2024-12-07 16:27
【總結(jié)】專業(yè)資料分享常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自
2025-05-16 02:07
【總結(jié)】梯形中的常見輔助線一、平移1、平移一腰:例1.如圖所示,在直角梯形ABCD中,∠A=90°,AB∥DC,AD=15,AB=16,BC=17.求CD的長.例2如圖,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范圍。2、平移兩腰:例3如圖,在梯形ABCD中,AD//BC,∠B+∠C=90
2025-06-22 16:00
【總結(jié)】第一講注意添加平行線證題在同一平面內(nèi),,,若能依據(jù)證題的需要,添加恰當(dāng)?shù)钠叫芯€,則能使證明順暢、簡潔.添加平行線證題,一般有如下四種情況.1為了改變角的位置大家知道,兩條平行直線被第三條直線所截,同位角相等
2025-03-25 01:21
【總結(jié)】例1:已知如圖1-1:D、E為△ABC內(nèi)兩點,求證:AB+AC>BD+DE+CE.例如:如圖2-1:已知D為△ABC內(nèi)的任一點,求證:∠BDC>∠BAC。分析:因為∠BDC與∠BAC不在同一個三角形中,沒有直接的聯(lián)系,可適當(dāng)添加輔助線構(gòu)造新的三角形,使∠BDC處于在外角的位置,∠BAC處于在內(nèi)角的位置;例如:如圖3-1:已知A
2025-07-23 03:37
【總結(jié)】......初中數(shù)學(xué)輔助線的添加淺談人們從來就是用自己的聰明才智創(chuàng)造條件解決問題的,當(dāng)問題的條件不夠時,添加輔助線構(gòu)成新圖形,形成新關(guān)系,使分散的條件集中,建立已知與未知的橋梁,把問題轉(zhuǎn)化為自己能解決的問題,這是解決問題常用
2024-08-12 00:57
【總結(jié)】(1)只見顯性中點而看不到隱藏的中點;(2)挖掘出隱藏的中點后,卻不會將各中點條件合理地進(jìn)行篩選與重組;(3)構(gòu)造出待證全等三角形后,常常是找邊容易找角難,對于角相等的證明方法過于單一且不夠靈活.1、如圖,在等腰直角三角形ABC中,∠ABC=90°,D為邊AC的中點,過點D作DE⊥DF,交AB于點E,交B
2025-07-26 00:14
【總結(jié)】八年級數(shù)學(xué)上冊輔助線專題教學(xué)目標(biāo):掌握各種類型的全等三角形的證明方法教學(xué)重點:構(gòu)造全等三角形ZoQ0KC;tE^B101`教學(xué)難點:如何巧妙作輔助線知識點:(1)截長補(bǔ)短型(二)中點線段倍長問題(三)蝴蝶形圖案解決定值問題(四)角平分線與軸對稱(五)等腰直角三角形,等邊三角形(六)雙重直圖案與全等三角形典型例題講練重點例
2025-03-24 07:41
【總結(jié)】相似三角形中幾種常見的輔助線作法在添加輔助線時,所添加的輔助線往往能夠構(gòu)造出一組或多組相似三角形,或得到成比例的線段或出等角,等邊,從而為證明三角形相似或進(jìn)行相關(guān)的計算找到等量關(guān)系。主要的輔助線有以下幾種:一、添加平行線構(gòu)造“A”“X”型例1:如圖,D是△ABC的BC邊上的點,BD:DC=2:1,E是AD的中點,求:BE:EF的值.解法一:過點D作CA的平行線交BF于點
2025-06-25 03:22
【總結(jié)】專業(yè)資料分享三角形中作輔助線的常用方法舉例一、延長已知邊構(gòu)造三角形:例如:如圖7-1:已知AC=BD,AD⊥AC于A,BC⊥BD于B,求證:AD=BC分析:欲證AD=BC,先證分別含有AD,BC的三角形全等,有幾種方案:△ADC與△BCD,△AOD與△BOC,△ABD與
2024-08-12 01:15
【總結(jié)】三角形中作輔助線的常用方法舉例一、延長已知邊構(gòu)造三角形:例如:如圖7-1:已知AC=BD,AD⊥AC于A,BC⊥BD于B,求證:AD=BC分析:欲證AD=BC,先證分別含有AD,BC的三角形全等,有幾種方案:△ADC與△BCD,△AOD與△BOC,△ABD與△BAC,但根據(jù)現(xiàn)有條件,均無法證全等,差角的相等,因此可設(shè)法作出新的角,且讓此角作為兩個三角形的公共角。證明:分別
2024-08-12 00:50
【總結(jié)】幾何輔助線練習(xí)之旋轉(zhuǎn)類旋轉(zhuǎn)技巧同步訓(xùn)練題
2025-06-24 15:21
【總結(jié)】圓的常用輔助線及作法嘗試練習(xí)一嘗試練習(xí)二數(shù)學(xué)歌訣作法及應(yīng)用弦心距直徑圓周角切線徑兩圓相切公切線中點圓心線兩圓相交公共弦嘗試練習(xí)圓的常用輔助線及作法常用思想圓是初中幾何學(xué)習(xí)中重要內(nèi)容,學(xué)好圓的有關(guān)知識,掌握正確的解題方法,對于提高學(xué)生
2025-01-18 17:52
【總結(jié)】梯形中常見輔助線課件制作:王從亮課件審核:田學(xué)銀例題精講,在梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,求證:CD=BC-AD.延長兩腰,將梯形轉(zhuǎn)化成三角形.EDBCA平移一腰,梯形轉(zhuǎn)化成:平行四邊和三角形.DBCA
2024-11-10 03:18
【總結(jié)】中小學(xué)個性化輔導(dǎo)專家龍文教育學(xué)科教師輔導(dǎo)講義學(xué)員姓名:年級:所在學(xué)校:教師:課題作輔助線的常用方法授課時間:教學(xué)目標(biāo)1構(gòu)造等腰三角形2構(gòu)造"全等三角形"重點、難點取線段中點構(gòu)造全等三角形。連接已知點,構(gòu)造"全等三角形"或"等腰三角形"。
2025-07-26 12:39