【總結】2019屆高二文科數(shù)學新課改試驗學案(10)---圓錐曲線中的定值定點問題的離心率為,點在C上.(I)求C的方程;(II)直線l不經(jīng)過原點O,且不平行于坐標軸,l與C有兩個交點A,B,線段AB中點為M,證明:直線OM的斜率與直線l的斜率乘積為定值.:過點A(2,0),B(0,1)兩點.(I)求橢圓C的方程
2025-03-25 00:03
【總結】橢圓中的相關問題一、橢圓中的最值問題:,內有一點,為橢圓上任意一點,若要求最小,則這最小值是()A.B.C.D.,,為橢圓上任意一點,若要求最小,則這最小值是()A.B.C.D.3.橢圓上任一點橢圓到兩焦點橢圓,的距離之積的最大值是,最小值是。4.設,則的
2025-07-21 11:38
【總結】第十章圓錐曲線★知識網(wǎng)絡★橢圓雙曲線拋物線定義定義定義標準方程標準方程幾何性質幾何性質應用應用標準方程幾何性質應用圓錐曲線直線與圓錐曲線位置關系相交相切相離圓錐曲線的弦第1講橢圓★知識梳理★1.橢圓定義:(1)第一定義:平面內與兩個定點的距離之和為常數(shù)的動點的軌跡叫橢圓,
2025-08-04 09:58
【總結】第五節(jié)圓錐曲線的綜合應用1.圓錐曲線的統(tǒng)一定義:平面內到__________________________________________________________________是圓錐曲線,當________時,軌跡是橢圓;當________時,軌跡是雙曲線;當________時,軌跡表示拋物線,定點F是圓錐曲線的一個________
2024-11-12 18:19
【總結】第64講圓錐曲線的綜合應用,第一頁,編輯于星期五:十六點五十七分。,第二頁,編輯于星期五:十六點五十七分。,第三頁,編輯于星期五:十六點五十七分。,第四頁,編輯于星期五:十六點五十七分。,第五頁,編輯...
2024-10-24 06:27
【總結】圓錐曲線一、知識點1、曲線和方程2、橢圓定義(第一定義、第二定義)3、橢圓標準方程(1、2)與參數(shù)方程4、橢圓性質:圖像特點、范圍、頂點、離心率、對稱性、準線、焦半徑、通徑等5、橢圓與直線的位置關系二、雙曲線1、定義(第一、第二定義)2、標準方程3、性質“圖像、范圍、頂點、離心率、對稱性、準線、漸近線、焦半徑、通徑等4、雙曲線與直
2025-07-23 20:57
【總結】解析幾何專題·經(jīng)典結論收集整理:宋氏資料2016-1-1有關解析幾何的經(jīng)典神級結論一、橢圓1.點處的切線平分在點處的外角.(橢圓的光學性質)2.平分在點處的外角,則焦點在直線上的射影點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.(中位線)3.以焦點弦為直徑的圓必與對應準線相離.(第二定義)4.以焦點半徑為直徑的圓必與以長軸為直徑
2025-08-05 04:54
【總結】山東高考解析幾何題的推廣及背景溯源2011年高考山東理科第22題,是一道以橢圓為背景考查定值問題、最值問題和存在性問題的解析幾何壓軸題,重點考查推理運算能力和數(shù)學綜合素質。本文筆者嘗試對該題的結論作一般化推廣,并對其背景作深度挖掘和溯源解析,與讀者交流。?題目已知直線與橢圓交于兩不同點,且面積,其中為坐標原點。(Ⅰ)證明和均為定值;(Ⅱ)設線段的中點為,求的最大值;(Ⅲ)
2025-07-25 00:15
【總結】圓錐曲線有關焦點弦的幾個公式及應用如果圓錐曲線的一條弦所在的直線經(jīng)過焦點,則稱此弦為焦點弦。圓錐曲線的焦點弦問題涉及到離心率、直線斜率(或傾斜角)、定比分點(向量)、焦半徑和焦點弦長等有關知識。焦點弦是圓錐曲線的“動脈神經(jīng)”,集數(shù)學知識、思想方法和解題策略于一體,倍受命題人青睞,在近幾年的高考中頻頻亮相,題型多為小題且位置靠后屬客觀題中的壓軸題,也有作為大題進行考查的。本文介紹圓錐曲線有關焦
2025-07-25 12:41
【總結】WORD資料可編輯圓錐曲線光學性質的證明及應用初探一、圓錐曲線的光學性質1.1 橢圓的光學性質:從橢圓一個焦點發(fā)出的光,經(jīng)過橢圓反射后,反射光線都匯聚到橢圓的另一個焦點上;()橢圓的這種光學特性,常被用來設計一些照明設備或聚熱裝置.例如在處放置一個熱源,那
2025-06-22 16:01
【總結】二圓錐曲線的參數(shù)方程更上一層樓基礎·鞏固1直線=1與橢圓=1相交于A、B兩點,該橢圓上點P使得△PAB的面積等于3,這樣的點P共有()思路解析:設P1(4cosα,3sinα),α∈(0,),則=×4sinα+×3×4cosα=6(si
2025-08-05 03:29
【總結】......有關解析幾何的經(jīng)典結論一、橢圓1.點處的切線平分在點處的外角.(橢圓的光學性質)2.平分在點處的外角,則焦點在直線上的射影點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.(中位線)3.
【總結】專題 圓錐曲線中的探索性問題1.(2016·課標全國乙)在直角坐標系xOy中,直線l:y=t(t≠0)交y軸于點M,交拋物線C:y2=2px(p0)于點P,M關于點P的對稱點為N,連接ON并延長交C于點H.(1)求;(2)除H以外,直線MH與C是否有其他公共點?說明理由.2.(2016·四川)已知橢圓E:+=1(ab&g
2025-07-25 00:14
【總結】圓錐曲線焦點弦公式及應用湖北省陽新縣高級中學 鄒生書焦點弦是圓錐曲線的“動脈神經(jīng)”,集數(shù)學知識、思想方法和解題策略于一體,倍受命題人青睞,在近幾年的高考中頻頻亮相,題型多為小題且位置靠后屬客觀題中的壓軸題,也有作為大題進行考查的。定理1已知點是離心率為的圓錐曲線的焦點,過點的弦與的焦點所在的軸的夾角為,且。(1)當焦點內分弦時,有;(2)當焦點外分弦時(此時曲線為雙曲線),有。
【總結】WORD資料可編輯圓錐曲線中的最值取值范圍問題=l(a0,b0)的左、右焦點,P為雙曲線上的一點,若,且的三邊長成等差數(shù)列.又一橢圓的中心在原點,短軸的一個端點到其右焦點的距離為,雙曲線與該橢圓離心率之積為。(I)求橢圓的方程;(
2025-03-25 00:02