【總結(jié)】2022/8/21阜師院數(shù)科院第四節(jié)一、隱函數(shù)的導數(shù)二、由參數(shù)方程確定的函數(shù)的導數(shù)三、相關(guān)變化率機動目錄上頁下頁返回結(jié)束隱函數(shù)和參數(shù)方程求導相關(guān)變化率第二章2022/8/21阜師院數(shù)科院一、隱函數(shù)的導數(shù)若由方程可確定y是x的函數(shù)
2024-08-02 16:36
【總結(jié)】的函數(shù)的求導一、隱函數(shù)的導數(shù)二、由參數(shù)方程所確定的函數(shù)的導數(shù)返回一、隱函數(shù)的導數(shù)定義:.),(稱為隱函數(shù)由方程所確定的函數(shù)0?yxF.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問題:隱函數(shù)不易顯化或不能顯化如何求導?隱函數(shù)求導法則:用復(fù)合函數(shù)求導法則直接對方程兩
2024-07-30 12:40
【總結(jié)】第四節(jié)一、隱函數(shù)的導數(shù)二、由參數(shù)方程確定的函數(shù)的導數(shù)三、相關(guān)變化率機動目錄上頁下頁返回結(jié)束隱函數(shù)和參數(shù)方程求導相關(guān)變化率第二章一、隱函數(shù)的導數(shù)若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)
2024-08-02 16:17
2024-08-02 15:26
【總結(jié)】第四節(jié)一、隱函數(shù)的導數(shù)二、由參數(shù)方程確定的函數(shù)的導數(shù)三、相關(guān)變化率機動目錄上頁下頁返回結(jié)束隱函數(shù)和參數(shù)方程求導相關(guān)變化率第二章一、隱函數(shù)的導數(shù)若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)可確定y是x的函
2024-08-02 12:14
【總結(jié)】高等數(shù)學教案第九章多元函數(shù)微分法及其應(yīng)用第五節(jié)隱函數(shù)的求導法則一、一個方程的情形隱函數(shù)存在定理1設(shè)函數(shù)在點的某一鄰域內(nèi)具有連續(xù)偏導數(shù),,,則方程在點的某一鄰域內(nèi)恒能唯一確定一個連續(xù)且具有連續(xù)導數(shù)的函數(shù),它滿足條件,并有.說明:1)定理證明略,現(xiàn)僅給
2024-08-14 18:49
【總結(jié)】第五節(jié)隱函數(shù)及參數(shù)方程的求導方法、高階導數(shù)一、隱函數(shù)的微分法二、由參數(shù)方程所確定的函數(shù)的微分法第三模塊函數(shù)的微分學三、對數(shù)微分法四、高階導數(shù)一、隱函數(shù)的微分法例1設(shè)方程x2+y2=R2(R為常數(shù))確定函數(shù)y=y(x),.ddxy求解在方程兩邊求微分,
2025-04-30 13:59
【總結(jié)】第五節(jié)隱函數(shù)的求導法則一、一個方程的情形二、方程組的情形三、由方程組確定的反函數(shù)的求導公式0),(.1?yxF隱函數(shù)存在定理1設(shè)函數(shù)在點的某一鄰域內(nèi)具有連續(xù)的偏導數(shù),且則方程在點的某一鄰域內(nèi)恒能唯一確定一個單值連續(xù)且具有連續(xù)導數(shù)的函數(shù))(xf
2024-10-17 12:16
【總結(jié)】第18章隱函數(shù)定理及其應(yīng)用小結(jié)一、內(nèi)容要求1、了解隱函數(shù)的概念,理解隱函數(shù)存在唯一性定理、可微性定理,掌握隱函數(shù)的求導法2、了解隱函數(shù)組的概念,理解隱函數(shù)組定理、掌握求導法,了解反函數(shù)定理與坐標變換3、會求平面曲線的切線與法線,空間曲線的切線與與法平面,曲面的切平面與法線4、會用拉格朗日乘數(shù)法解決條件極值問題(極值、最值、不等式)
2024-08-03 18:27
【總結(jié)】第四節(jié)一、隱函數(shù)求導法三、由參數(shù)方程確定的函數(shù)的導數(shù)五、相關(guān)變化率隱函數(shù)的求導法和參數(shù)方程確定的函數(shù)求導法第二章二、對數(shù)求導法四、由極坐標確定的函數(shù)的導數(shù)一、隱函數(shù)的導數(shù)定義:.)(形式稱為顯函數(shù)xfy?若由方程可確定y是x的函數(shù),此函數(shù)為由方程則稱
2024-08-03 09:35
【總結(jié)】第18章一、一個方程所確定的隱函數(shù)及其導數(shù)二、方程組所確定的隱函數(shù)組及其導數(shù)§1隱函數(shù)及隱函數(shù)組數(shù)學分析?2?一.隱函數(shù)概念引例1.10xyy???,),1()1,(???????()yfx?,.11xy??方程當
2024-10-04 22:32
【總結(jié)】上頁下頁結(jié)束返回首頁四、隱函數(shù)的導數(shù)對數(shù)求導法由參數(shù)方程所確定函數(shù)的導數(shù)?隱函數(shù)的導數(shù)?對數(shù)求導法由參數(shù)?方程所確定函數(shù)的導數(shù)上頁下頁結(jié)束返回首頁1、隱函數(shù)的導數(shù)P102定義:.)(0),(,,,0),(xf
2025-02-21 12:49
【總結(jié)】隱函數(shù)與參量函數(shù)微分法一、隱函數(shù)的導數(shù)定義:隱函數(shù)的顯化問題:隱函數(shù)不易顯化或不能顯化如何求導?隱函數(shù)求導法則:用復(fù)合函數(shù)求導法則直接對方程兩邊求導.兩邊對x求導,當遇到y(tǒng)的函數(shù)f(y)時將求出的這些導數(shù)代入得到關(guān)于的代數(shù)方程,至于隱函數(shù)求二階導數(shù),與上同理例1解解得
2024-08-13 07:43
【總結(jié)】復(fù)合函數(shù)的導數(shù)一、復(fù)習與引入:1.函數(shù)的導數(shù)的定義與幾何意義...y=(3x-2)2的導數(shù),那么我們可以把平方式展開,利用導數(shù)的四則運算法則求導.然后能否用其它的辦法求導呢?又如我們知道函數(shù)y=1/x2的導數(shù)是=-2/x3,那么函數(shù)y=1/(3x-2)2的導數(shù)又是什么呢?為了解決上面
2024-11-03 19:25
【總結(jié)】第四節(jié)一元復(fù)合函數(shù)求導法則本節(jié)內(nèi)容:一、多元復(fù)合函數(shù)求導的鏈式法則二、多元復(fù)合函數(shù)的全微分微分法則機動目錄上頁下頁返回結(jié)束多元復(fù)合函數(shù)的求導法則一、多元函數(shù)與一元函數(shù)的復(fù)合(,)zfxy?()()xtvt???????多元
2025-01-19 14:36