【總結(jié)】2022/8/21阜師院數(shù)科院第四節(jié)一、隱函數(shù)的導(dǎo)數(shù)二、由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)三、相關(guān)變化率機(jī)動(dòng)目錄上頁下頁返回結(jié)束隱函數(shù)和參數(shù)方程求導(dǎo)相關(guān)變化率第二章2022/8/21阜師院數(shù)科院一、隱函數(shù)的導(dǎo)數(shù)若由方程可確定y是x的函數(shù)
2025-07-24 16:36
【總結(jié)】的函數(shù)的求導(dǎo)一、隱函數(shù)的導(dǎo)數(shù)二、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)返回一、隱函數(shù)的導(dǎo)數(shù)定義:.),(稱為隱函數(shù)由方程所確定的函數(shù)0?yxF.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問題:隱函數(shù)不易顯化或不能顯化如何求導(dǎo)?隱函數(shù)求導(dǎo)法則:用復(fù)合函數(shù)求導(dǎo)法則直接對(duì)方程兩
2025-07-21 12:40
【總結(jié)】第四節(jié)一、隱函數(shù)的導(dǎo)數(shù)二、由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)三、相關(guān)變化率機(jī)動(dòng)目錄上頁下頁返回結(jié)束隱函數(shù)和參數(shù)方程求導(dǎo)相關(guān)變化率第二章一、隱函數(shù)的導(dǎo)數(shù)若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)
2025-07-24 16:17
2025-07-24 15:26
【總結(jié)】第四節(jié)一、隱函數(shù)的導(dǎo)數(shù)二、由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)三、相關(guān)變化率機(jī)動(dòng)目錄上頁下頁返回結(jié)束隱函數(shù)和參數(shù)方程求導(dǎo)相關(guān)變化率第二章一、隱函數(shù)的導(dǎo)數(shù)若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)可確定y是x的函
2025-07-24 12:14
【總結(jié)】高等數(shù)學(xué)教案第九章多元函數(shù)微分法及其應(yīng)用第五節(jié)隱函數(shù)的求導(dǎo)法則一、一個(gè)方程的情形隱函數(shù)存在定理1設(shè)函數(shù)在點(diǎn)的某一鄰域內(nèi)具有連續(xù)偏導(dǎo)數(shù),,,則方程在點(diǎn)的某一鄰域內(nèi)恒能唯一確定一個(gè)連續(xù)且具有連續(xù)導(dǎo)數(shù)的函數(shù),它滿足條件,并有.說明:1)定理證明略,現(xiàn)僅給
2025-08-05 18:49
【總結(jié)】第五節(jié)隱函數(shù)及參數(shù)方程的求導(dǎo)方法、高階導(dǎo)數(shù)一、隱函數(shù)的微分法二、由參數(shù)方程所確定的函數(shù)的微分法第三模塊函數(shù)的微分學(xué)三、對(duì)數(shù)微分法四、高階導(dǎo)數(shù)一、隱函數(shù)的微分法例1設(shè)方程x2+y2=R2(R為常數(shù))確定函數(shù)y=y(x),.ddxy求解在方程兩邊求微分,
2025-04-30 13:59
【總結(jié)】第五節(jié)隱函數(shù)的求導(dǎo)法則一、一個(gè)方程的情形二、方程組的情形三、由方程組確定的反函數(shù)的求導(dǎo)公式0),(.1?yxF隱函數(shù)存在定理1設(shè)函數(shù)在點(diǎn)的某一鄰域內(nèi)具有連續(xù)的偏導(dǎo)數(shù),且則方程在點(diǎn)的某一鄰域內(nèi)恒能唯一確定一個(gè)單值連續(xù)且具有連續(xù)導(dǎo)數(shù)的函數(shù))(xf
2024-10-17 12:16
【總結(jié)】第18章隱函數(shù)定理及其應(yīng)用小結(jié)一、內(nèi)容要求1、了解隱函數(shù)的概念,理解隱函數(shù)存在唯一性定理、可微性定理,掌握隱函數(shù)的求導(dǎo)法2、了解隱函數(shù)組的概念,理解隱函數(shù)組定理、掌握求導(dǎo)法,了解反函數(shù)定理與坐標(biāo)變換3、會(huì)求平面曲線的切線與法線,空間曲線的切線與與法平面,曲面的切平面與法線4、會(huì)用拉格朗日乘數(shù)法解決條件極值問題(極值、最值、不等式)
2025-07-25 18:27
【總結(jié)】第四節(jié)一、隱函數(shù)求導(dǎo)法三、由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)五、相關(guān)變化率隱函數(shù)的求導(dǎo)法和參數(shù)方程確定的函數(shù)求導(dǎo)法第二章二、對(duì)數(shù)求導(dǎo)法四、由極坐標(biāo)確定的函數(shù)的導(dǎo)數(shù)一、隱函數(shù)的導(dǎo)數(shù)定義:.)(形式稱為顯函數(shù)xfy?若由方程可確定y是x的函數(shù),此函數(shù)為由方程則稱
2025-07-25 09:35
【總結(jié)】第18章一、一個(gè)方程所確定的隱函數(shù)及其導(dǎo)數(shù)二、方程組所確定的隱函數(shù)組及其導(dǎo)數(shù)§1隱函數(shù)及隱函數(shù)組數(shù)學(xué)分析?2?一.隱函數(shù)概念引例1.10xyy???,),1()1,(???????()yfx?,.11xy??方程當(dāng)
2024-10-04 22:32
【總結(jié)】上頁下頁結(jié)束返回首頁四、隱函數(shù)的導(dǎo)數(shù)對(duì)數(shù)求導(dǎo)法由參數(shù)方程所確定函數(shù)的導(dǎo)數(shù)?隱函數(shù)的導(dǎo)數(shù)?對(duì)數(shù)求導(dǎo)法由參數(shù)?方程所確定函數(shù)的導(dǎo)數(shù)上頁下頁結(jié)束返回首頁1、隱函數(shù)的導(dǎo)數(shù)P102定義:.)(0),(,,,0),(xf
2025-02-21 12:49
【總結(jié)】隱函數(shù)與參量函數(shù)微分法一、隱函數(shù)的導(dǎo)數(shù)定義:隱函數(shù)的顯化問題:隱函數(shù)不易顯化或不能顯化如何求導(dǎo)?隱函數(shù)求導(dǎo)法則:用復(fù)合函數(shù)求導(dǎo)法則直接對(duì)方程兩邊求導(dǎo).兩邊對(duì)x求導(dǎo),當(dāng)遇到y(tǒng)的函數(shù)f(y)時(shí)將求出的這些導(dǎo)數(shù)代入得到關(guān)于的代數(shù)方程,至于隱函數(shù)求二階導(dǎo)數(shù),與上同理例1解解得
2025-08-04 07:43
【總結(jié)】復(fù)合函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí)與引入:1.函數(shù)的導(dǎo)數(shù)的定義與幾何意義...y=(3x-2)2的導(dǎo)數(shù),那么我們可以把平方式展開,利用導(dǎo)數(shù)的四則運(yùn)算法則求導(dǎo).然后能否用其它的辦法求導(dǎo)呢?又如我們知道函數(shù)y=1/x2的導(dǎo)數(shù)是=-2/x3,那么函數(shù)y=1/(3x-2)2的導(dǎo)數(shù)又是什么呢?為了解決上面
2024-11-03 19:25
【總結(jié)】第四節(jié)一元復(fù)合函數(shù)求導(dǎo)法則本節(jié)內(nèi)容:一、多元復(fù)合函數(shù)求導(dǎo)的鏈?zhǔn)椒▌t二、多元復(fù)合函數(shù)的全微分微分法則機(jī)動(dòng)目錄上頁下頁返回結(jié)束多元復(fù)合函數(shù)的求導(dǎo)法則一、多元函數(shù)與一元函數(shù)的復(fù)合(,)zfxy?()()xtvt???????多元
2025-01-19 14:36