【總結(jié)】§2初等矩陣一、初等矩陣的概念二、初等矩陣的應(yīng)用1、定義由單位矩陣E經(jīng)過一次初等變換得到的方陣稱為初等矩陣.三種初等變換對應(yīng)著三種初等方陣.矩陣的初等變換是矩陣的一種基本運(yùn)算,應(yīng)用廣泛.一、初等矩陣的概念??????行(列)上去.乘某行(列)加到另一以數(shù)乘某行或某
2024-08-03 01:31
【總結(jié)】1§逆矩陣2,111????aaaa,11EAAAA????則矩陣稱為的可逆矩陣或逆陣.A1?A、概念的引入在數(shù)的運(yùn)算中,當(dāng)數(shù)時(shí),0?a有aa11??a其中為的倒數(shù),a(或稱的逆);
2024-10-19 00:34
【總結(jié)】§5初等矩陣一、初等矩陣的概念和簡單性質(zhì)二、矩陣的等價(jià)一、初等矩陣的概念和簡單性質(zhì)定義由單位矩陣經(jīng)過一次初等變換得到的矩陣稱為初等矩陣.E的第I行與第j行交換得到初等矩陣11011(,)11011ijiPijj????
2024-08-01 14:24
【總結(jié)】第五節(jié)矩陣的初等變換及初等矩陣定義1下面三種變換稱為矩陣的初等行變換:??);記作兩行對調(diào)兩行(對調(diào)jirrji?,,1??;02乘以某一行的所有元素以數(shù)?k)記作行乘(第krkii?,??.3)記作行上倍加到第行的對應(yīng)的元素上去(第倍加到另一行把某一行所有元素的jikrrikjk
2024-10-14 17:21
【總結(jié)】上海八中許穎龍春朝2022年12月10日思考問題:記甲、乙、丙三位同學(xué)的語文平時(shí)、期中、期末成績?yōu)榫仃嘇,平時(shí)、期中、期末成績的所占比例為矩陣B,這三位同學(xué)的語文總評成績用矩陣C表示。???????????908060807090757080A????
2024-08-25 02:02
【總結(jié)】1§5線性變換的對角矩陣主要內(nèi)容對角化概念對角化的條件目錄下頁返回結(jié)束對角化的計(jì)算方法2一、對角化概念對角矩陣是矩陣中最簡單的一種.于是問題變?yōu)槟男┚€性變換在一組適當(dāng)?shù)幕驴梢允菍蔷仃?(),,,.,.nnLVPVV
2024-07-26 19:14
【總結(jié)】....特殊分塊矩陣的逆與秩朱利文,數(shù)學(xué)計(jì)算機(jī)科學(xué)學(xué)院摘··要:矩陣的逆和秩是矩陣的一個(gè)重要不變量,在矩陣中起著基本的作用。不論在理論上還是在實(shí)踐中,矩陣的逆和秩都是一種強(qiáng)有力的工具。深入掌握矩陣的逆和秩可以更好地將其應(yīng)用到實(shí)踐中。本文利用分塊矩陣的特性
2025-05-16 12:02
【總結(jié)】多小波變換的矩陣形式及其軟件實(shí)現(xiàn)上頁下頁退出多小波變換的矩陣形式及其軟件實(shí)現(xiàn)我們知道,進(jìn)行1次多小波變換的分解與重構(gòu)公式為:與單小波不同之處在于,公式中的s(n,k)是r維列向量,H(k),G(k)是rXr大小的矩陣。因此,在使用這個(gè)公式前,
2025-05-03 13:40
【總結(jié)】矩陣的合同變換摘要:矩陣的合同變換是高等代數(shù)矩陣?yán)碚撝?,基本交換。在《高等代數(shù)》里,我們僅討論簡單而直接的變換,而矩陣的合同變換與矩陣相似變換,二次型等有著諸多相同性質(zhì)和聯(lián)系。關(guān)鍵詞:矩陣秩合同對角化定義1:如果矩陣A可以經(jīng)過一系列初等變換變成B,則積A與B等價(jià),記為定義2:設(shè)A,B都是數(shù)域F上的n階方陣,如果存在數(shù)域F上的n階段可逆矩陣P使得,則稱A和B相似
2024-08-02 03:28
【總結(jié)】用矩陣的初等行變換求N個(gè)整數(shù)的最大公因子數(shù)學(xué)系20021112班高興龍指導(dǎo)教師鐵勇摘要:初等變換是高等代數(shù)中重要的內(nèi)容之一,在數(shù)學(xué)學(xué)習(xí)中體現(xiàn)出很大的實(shí)用性。本文在常規(guī)方法(提取公因數(shù)法、分解質(zhì)因數(shù)法等)的基礎(chǔ)上,運(yùn)用最大公因子的理論知識和矩陣的初等行變換,簡便有效地求出N個(gè)數(shù)的最大公因子。其意義在于體現(xiàn)這種方法的優(yōu)越性,促進(jìn)此類問題的研究。關(guān)鍵詞:初等行變換;整數(shù)
2025-01-13 14:11
【總結(jié)】1/173、逆矩陣的求法一般矩陣的逆矩陣的求法用定義去求逆矩陣定義設(shè)A是一個(gè)n階矩陣,如果存在n階矩陣B,使AB=BA=E,則稱A為可逆矩陣,并稱B是A的可逆矩陣。例已知n階矩陣A滿足0322???EAA。證明A+4E可逆并求出??14??EA.證
2024-10-22 08:16
【總結(jié)】矩陣乘法的性質(zhì)?我們知道實(shí)數(shù)乘法運(yùn)算滿足一定的運(yùn)算律。即對實(shí)數(shù)?a,b,c有結(jié)合律:(ab)c=a(bc);?交換律:ab=ba;削去律:設(shè)a≠0,如果ab=ac,那么?b=c;如果ba=ca,那么b=c探究類比實(shí)數(shù)乘法的運(yùn)算律,二階矩陣的乘法是否也滿足某些運(yùn)算律??首先考察矩陣的
2024-08-14 09:02
【總結(jié)】選修4-2“矩陣與變換”全書復(fù)習(xí)江蘇省白塔高級中學(xué)相武通過幾何變換討論二階矩陣的乘法及性質(zhì)、逆矩陣和矩陣的特征向量,并以變換和映射的觀點(diǎn)理解解線性方程組的意義,初步展示矩陣應(yīng)用的廣泛性。主要內(nèi)容二階矩陣與平面向量幾種常見的平面變換變換的復(fù)合與矩陣的乘法逆矩陣與逆變換特征值與
2025-01-08 13:16
【總結(jié)】§逆矩陣b1.ba??1,abba??使得即對于任意非零的數(shù),如果存在另一個(gè)數(shù),倒數(shù):則說是的倒數(shù).aba一、逆矩陣產(chǎn)生的背景矩陣:運(yùn)算中的1,矩陣,B在矩陣的運(yùn)算中,單位陣相當(dāng)于數(shù)的乘法I那
2024-12-08 01:13
【總結(jié)】二階行列式與逆矩陣選修4-2矩陣與變換2022年6月4日星期六復(fù)習(xí):A,如果存在一個(gè)二階矩陣B,使得AB=
2025-05-07 06:31