【總結(jié)】第一頁,編輯于星期六:點三十二分。,2.2平面向量的線性運算2.2.3向量數(shù)乘運算及其幾何意義,第二頁,編輯于星期六:點三十二分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十二分。...
2024-10-22 18:48
【總結(jié)】【優(yōu)化指導】2021年高中數(shù)學向量加法運算及其幾何意義學業(yè)達標測試新人教A版必修41.在平行四邊形ABCD中,AB→+CA→+BD→等于()→→→→解析:原式=CA→+AB→+BD→=CD→.答案:D2.若C是線段AB的中點,則AC→+BC→=()
2024-12-09 03:43
【總結(jié)】【優(yōu)化指導】2021年高中數(shù)學向量數(shù)乘運算及其幾何意義課時跟蹤檢測新人教A版必修4考查知識點及角度難易度及題號基礎(chǔ)中檔稍難向量的線性運算211用已知向量表示其他向量57共線向量定理的運用1、46、8、10綜合問題39、12131.平面向量a,b共線的充
2024-12-09 03:42
【總結(jié)】幾何意義及應用教學目標A層:理解復數(shù)的運算與復數(shù)模的關(guān)系,能夠應用復數(shù)的幾何意義,模仿例題解決一些簡單的復數(shù)幾何問題.B層:在A層的基礎(chǔ)上,通過滲透轉(zhuǎn)化數(shù)形結(jié)合的思想和方法,能夠解決例題變式題,甚至可以自己構(gòu)造新的題型.培養(yǎng)探索和創(chuàng)新能力.
2024-08-14 19:13
【總結(jié)】導數(shù)的幾何意義英德中學高二數(shù)學備課組導數(shù)的幾何意義課堂引入學習目標新知探究新知運用學習反思問題1:平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?問題2如圖直線l1是曲線C的切線嗎?l2呢?l21AB0xy對于一般的曲線
2024-10-19 16:25
【總結(jié)】復數(shù)的幾何意義實數(shù)的幾何意義?新課導入在幾何上,我們用什么來表示實數(shù)?實數(shù)可以用數(shù)軸上的點來表示.數(shù)軸上的點實數(shù)(數(shù))一一對應(形)Z=a+bi(a,b∈R)實部虛部一個復數(shù)由什么確定?你能否找到用來表示
2024-08-04 05:14
【總結(jié)】導數(shù)的幾何意義回顧①平均變化率函數(shù)y=f(x)從x1到x2平均變化率為:②平均變化率的幾何意義:割線的斜率OABxyY=f(x)x1x2f(x1)f(x2)x2-x1=△xf(x2)-f(x1)=△y121)()??
【總結(jié)】【課標要求】1.了解導數(shù)的概念;理解導數(shù)的幾何意義.2.會求導數(shù).3.根據(jù)導數(shù)的幾何意義,會求曲線上某點處的切線方程.【核心掃描】1.利用導數(shù)的幾何意義求曲線在某點處的切線方程.(重點)2.準確理解在某點處與過某點的切線方程.(易混點)自學導引1.切線:如圖,當點
2024-07-30 21:55
【總結(jié)】NetworkOptimizationExpertTeam知識的超市,生命的狂歡1、課本、導學案、非常學案、練習本、雙色筆2、分析錯因,自糾學案3、標記疑難,以備討論NetworkOptimizationExpertTeam知識的超市,生命的狂歡度?等于這段時間的平均速在什么時刻的瞬時速度)質(zhì)點(的平均速度;這段時間內(nèi)質(zhì)
2024-11-03 20:18
【總結(jié)】向量數(shù)乘運算及其幾何意義加法三角形法則:a?Ab?BCba???a?a?Ab?Bb?OCba???首尾相連,始到終共起點,對角線babBaABAab??O共起點,后到前加法平行四邊形法則:減法三角形法則:已知非零向量
2025-06-06 01:39
【總結(jié)】復數(shù)的幾何意義⑵一、復習回顧:復平面復數(shù)z=a+bi有序?qū)崝?shù)對(a,b)直角坐標系中的點Z(a,b)xyobaZ(a,b)建立了平面直角坐標系來表示復數(shù)的平面x軸------實軸y軸------虛軸(數(shù))(形)------復數(shù)平面
2024-11-17 18:06
【總結(jié)】§復習檢測5分鐘之內(nèi)完成下列兩題:(1)(2+i)(4+3i);(2)化復數(shù)為代數(shù)形式和三解形式.1111222212(cossin)(cossin),?zrizrizz?????????設(shè),則通過計算你發(fā)現(xiàn)了什么問
2024-08-03 14:18
【總結(jié)】Z=a+bi(a,b∈R)實部!虛部!復數(shù)的代數(shù)形式:一個復數(shù)由有序?qū)崝?shù)對(a,b)確定實數(shù)可以用數(shù)軸上的點來表示。實數(shù)數(shù)軸上的點一一對應(數(shù))(形)類比實數(shù)的表示,可以用直角坐標系中的點的點來表示復數(shù)一.復平面復數(shù)z=a+bi直角坐標系中的點Z(a
2024-11-12 17:13
【總結(jié)】課程目標設(shè)置主題探究導學1.“函數(shù)y=f(x)在x=x0處的導數(shù)值就是Δx=0時的平均變化率”.這種說法對嗎?提示:這種說法不對,y=f(x)在x=x0處的導數(shù)值是Δx趨向于0時,平均變化率無限接近的一個常數(shù)值,而不是Δx=0時的值,實際上,在平均變化率的表達式中,Δx≠0.y
2025-01-13 21:41
【總結(jié)】上頁下頁返回結(jié)束2022年2月9日星期三徐州工程學院數(shù)理學院第八章空間解析幾何與向量代數(shù)上頁下頁返回結(jié)束2022年2月9日星期三徐州工程學院數(shù)理學院第一節(jié)向量及其線性運算第八章一、向量的概念二、向量的線性運算三、空間直角坐標系
2025-01-12 10:28