【總結(jié)】第二章平面向量,第一頁,編輯于星期六:點三十三分。,§3從速度的倍數(shù)到數(shù)乘向量3.2平面向量基本定理,第二頁,編輯于星期六:點三十三分。,,自主學(xué)習(xí)梳理知識,課前基礎(chǔ)梳理,第三頁,編輯于星期六:點三十...
2024-10-22 18:50
【總結(jié)】向量加法運算及其幾何意義學(xué)習(xí)目標:1.理解并掌握加法的概念,了解向量加法的物理意義及其幾何意義.2.掌握向量加法的三角形法則和平行四邊形法則,并能熟練地運用這兩個法則作兩個向量的加法運算.3.了解向量加法的交換律和結(jié)合律,并能依幾何意義作圖解釋加法運算律的合理性.學(xué)習(xí)重點:向量的加法、減法及幾何意義學(xué)習(xí)難點:向量運算的幾何意義一
2024-11-19 20:38
【總結(jié)】向量的加法運算及其幾何意義(結(jié))命題方向1向量的三角形法則如下圖中(1)、(2)所示,試作出向量a與b的和.[分析]依據(jù)向量加法的三角形法則,在平面上任取一點O,以O(shè)為起點作出一個向量等于a,再以終點為起點作下一個向量等于b,可得出a+b.[解析]如下圖中(1)、(2)所示,首先作OA
2024-11-19 17:41
【總結(jié)】向量加法運算及其幾何意義考查知識點及角度難易度及題號基礎(chǔ)中檔稍難利用向量加法運算法則化簡1、2、46向量加法在幾何中的應(yīng)用7、8、9、10、11其他問題3、5121.下列等式不成立的是()A.a(chǎn)+0=aB.a(chǎn)+b=b+a→+BA→=
2024-11-19 20:39
【總結(jié)】向量減法運算及其幾何意義學(xué)習(xí)目標:1.理解相反向量的含義,向量減法的意義及減法法則.2.掌握向量減法的幾何意義.3.能熟練地進行向量的加、減運算.學(xué)習(xí)重點:理解相反向量的含義,向量減法的意義及減法法則.學(xué)習(xí)難點:能熟練地進行向量的加、減運算.一.知識導(dǎo)學(xué)1.我們把與向量a長度相等且方
【總結(jié)】向量減法運算及其幾何意義考查知識點及角度難易度及題號基礎(chǔ)中檔稍難向量加減法運算的綜合2、3、46用已知向量表示其他向量112向量加、減法運算的應(yīng)用7、8、9、1113相反向量及運用5101.四邊形ABCD中,設(shè)AB→=a,AD→=b,BC→=c,則DC→
【總結(jié)】 向量數(shù)乘運算及其幾何意義 考試標準 課標要點 學(xué)考要求 高考要求 向量的數(shù)乘運算 c c 向量數(shù)乘運算的幾何意義 b b 知識導(dǎo)圖 學(xué)法指導(dǎo) ...
2025-04-03 04:15
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)向量減法運算及其幾何意義課時跟蹤檢測新人教A版必修4考查知識點及角度難易度及題號基礎(chǔ)中檔稍難向量加減法運算的綜合2、3、46用已知向量表示其他向量112向量加、減法運算的應(yīng)用7、8、9、1113相反向量及運用5101.四邊形
2024-12-09 03:42
【總結(jié)】第二章平面向量,第一頁,編輯于星期六:點三十三分。,§6平面向量數(shù)量積的坐標表示,第二頁,編輯于星期六:點三十三分。,,自主學(xué)習(xí)梳理知識,課前基礎(chǔ)梳理,第三頁,編輯于星期六:點三十三分。,,第四頁,編...
2024-10-22 18:51
【總結(jié)】太谷(金谷)中學(xué)高一數(shù)學(xué)導(dǎo)學(xué)案學(xué)習(xí)目標:1.掌握向量數(shù)乘的定義,理解向量數(shù)乘的幾何意義;2.掌握向量數(shù)乘的運算律;3.理解兩個向量共線的充要條件,能夠運用兩向量共線的條件判定兩向量是否平行.教學(xué)重點:理解向量數(shù)乘的幾何意義.教學(xué)重點:向量共線的充要條件及其應(yīng)用.教學(xué)過程情景平臺a已知非零向量a,把a+a+a記作3a,(-a)+(-a)+(-a)記作-3a,
2025-06-19 07:13
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)向量減法運算及其幾何意義學(xué)業(yè)達標測試新人教A版必修41.設(shè)b是a的相反向量,則下列說法錯誤的是()A.a(chǎn)與b的長度必相等B.a(chǎn)∥bC.a(chǎn)與b一定不相等D.a(chǎn)是b的相反向量解析:根據(jù)相反向量的定義可知,C錯誤,因為0與0互為相反向量,但0與0相等.
2024-12-09 03:43
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)向量加法運算及其幾何意義學(xué)業(yè)達標測試新人教A版必修41.在平行四邊形ABCD中,AB→+CA→+BD→等于()→→→→解析:原式=CA→+AB→+BD→=CD→.答案:D2.若C是線段AB的中點,則AC→+BC→=()
【總結(jié)】平面向量應(yīng)用舉例平面幾何中的向量方法問題提出t57301p2???????,使得向量可以進行線性運算和數(shù)量積運算,并具有鮮明的幾何背景,從而溝通了平面向量與平面幾何的內(nèi)在聯(lián)系,在某種條件下,平面向量與平面幾何可以相互轉(zhuǎn)化.、垂直、夾角、距離、全等、相似等,是平面幾何中常見的問題,而這些問題都可以由
2024-11-17 12:03
【總結(jié)】數(shù)乘運算上一節(jié)課,我們把平面向量的有關(guān)概念及加減運算擴展到了空間.平面向量空間向量加法減法運算加法:三角形法則或平行四邊形法則減法:三角形法則運算律加法交換律abba???加法結(jié)合律:()()ab
2024-11-18 12:14
【總結(jié)】第二章平面向量平面向量的基本定理及坐標表示平面向量共線的坐標表示1.通過實例了解如何用坐標表示兩個共線向量,以及兩直線平行與兩向量共線的判定.(易混點)2.理解用坐標表示的平面向量共線的條件,并會應(yīng)用.(重點)3.會根據(jù)平面向量的坐標判斷向量是否共線.(難點)1.平面向量共線的坐標表示2
2024-11-19 19:09