【總結(jié)】周承紅兗州市實驗高級中學(xué)線性運算1.向量與數(shù)量有何區(qū)別?2.怎樣來表示向量?3.什么叫相等向量?數(shù)量只有大小沒有方向;向量既有大小又有方向1)有向線段表示2)用字母來表示如aAB長度相等,方向相同的向量.(向量是與起點無關(guān)的自由向量,任何向量可以在不
2025-08-05 03:54
【總結(jié)】向量減法運算及其幾何意義知識回顧個向量的和向量分別如何操作?abaabba+ba+b三角形法則:首尾相接連端點.平行四邊形法則:起點相同連對角.?a+0=0+a=aa與b為相反向量a+b=0a+b=b+a(a+b)+c=a+(b
2024-09-30 11:58
【總結(jié)】第一頁,編輯于星期六:點三十二分。,2.2平面向量的線性運算2.2.3向量數(shù)乘運算及其幾何意義,第二頁,編輯于星期六:點三十二分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點三十二分。...
2024-10-22 18:48
【總結(jié)】向量數(shù)乘運算及其幾何意義加法三角形法則:a?Ab?BCba???a?a?Ab?Bb?OCba???首尾相連,始到終共起點,對角線babBaABAab??O共起點,后到前加法平行四邊形法則:減法三角形法則:已知非零向量
2025-06-06 01:39
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修4《向量加法運算及其幾何意義》教學(xué)目標(biāo)?掌握向量的加法運算,并理解其幾何意義;?會用向量加法的三角形法則和平行四邊形法則作兩個向量的和向量,培養(yǎng)數(shù)形結(jié)合解決問題的能力;?通過將向量運算與熟悉的數(shù)的運算進行類比,使學(xué)生掌握向量加法運算的交換律和結(jié)合律,并會用
2024-11-12 16:45
【總結(jié)】第一篇:《向量的加法運算及其幾何意義》教案 知識目標(biāo): 1、掌握向量的加法運算,并理解其幾何意義; 2、會用向量加法的三角形法則和平行四邊形法則作兩個向量的和,培養(yǎng)數(shù)形結(jié)合解決問題的能力; ...
2024-10-15 02:24
【總結(jié)】對數(shù)與對數(shù)運算[備用習(xí)題]()A.10410753aaaaa???B.6522)(yxyxyxy???C.8157332babaabba?D.33)1255(?=5+125125521253??答案:Ba0,r,s∈Q,以下運算中正確
2024-12-08 01:57
【總結(jié)】2.2向量的線性運算2.向量的加法情景:請看如下問題:(1)如圖(1),某人從A到B,再從B按原來的方向到C,則兩次位移的和AB→+BC→應(yīng)該是________.(2)如圖(2),飛機從A到B,再改變方向從B到C,則兩次位移的和AB→+BC→應(yīng)該是________.(3)如圖
2024-12-08 20:22
【總結(jié)】平面向量應(yīng)用舉例命題方向1向量在平面幾何中的應(yīng)用例1求證:直徑所對的圓周角為直角.[分析]本題實質(zhì)就是證明AB→2BC→=0.[證明]設(shè)AO→=a,OB→=b,則AB→=a+b,OC→=a,BC→=a-b,|a|=|b|.
2024-11-19 19:09
【總結(jié)】向量加法運算及其幾何意義[學(xué)習(xí)目標(biāo)] ,,,并能依幾何意義作圖解釋加法運算律的合理性.知識點一 向量的加法1.向量加法的定義定義:求兩個向量和的運算,叫做向量的加法.對于零向量與任一向量a,規(guī)定0+a=a+0=a.2.向量求和的法則三角形法則如圖,已知非零向量a,b,在平面內(nèi)任取一點A,作=a,=b,則向量叫做a與b的和,記作a+b,即a+b=+=
2025-07-23 14:00
【總結(jié)】平面向量數(shù)量積的物理背景及其含義一、向量的向量積在物理學(xué)中,由于討論像力矩以及物體繞軸旋轉(zhuǎn)時的角速度與線速度之間的關(guān)系等這類問題的需要,就必須引進兩向量乘法的另一運算——向量的向量積.定義如下:兩個向量a與b的向量積是一個新的向量c:(1)c的模等于以a及b兩個向量為邊所作成的平行四邊形的面積;(2)c垂直于
2024-12-05 06:47
【總結(jié)】第五屆全國高中青年數(shù)學(xué)教師優(yōu)秀課觀摩活動教案《向量加法運算及其幾何意義》教學(xué)設(shè)計河南省商丘市實驗中學(xué)杜志國《》教案授課教師:河南省商丘市實驗中學(xué)杜志國一、教學(xué)目標(biāo)知識目標(biāo):理解向量加法的含義,會用向量加法的三角形法則和平行四邊形法則作出兩個向量的和;掌握向量加法的交換律與結(jié)合律,并會用它們進
2025-08-05 01:08
【總結(jié)】弧度制重點:用弧度制表示各種角以及弧度制與角度制之間的換算.難點:對弧度制的引入.一、角度制與弧度制的轉(zhuǎn)化同一個角,除零角之外,用“度”表示與用“弧度”表示是不同的數(shù)量.“度”不可省略,“弧度”即“rad”可省略.其換算關(guān)系以π=180°為轉(zhuǎn)化點.例1(1)把112°30′
2024-12-05 06:49
【總結(jié)】平面向量的數(shù)量積的物理背景及其含義命題方向1計算向量的數(shù)量積例1已知|a|=4,|b|=5,當(dāng)(1)a∥b;(2)a⊥b;(3)a與b的夾角為60°時,分別求a與b的數(shù)量積.[分析]a∥b時其夾角為0°或180°,a⊥b時其夾角為90°,將兩向量的模及夾角代入
【總結(jié)】2.平面向量共線的坐標(biāo)表示命題方向1三點共線問題例1.O是坐標(biāo)原點,OA→=(k,12),OB→=(4,5),OC→=(10,k).當(dāng)k為何值時,A、B、C三點共線?[分析]由A、B、C三點共線可知,AB→、AC→、BC→中任兩個共線,由坐標(biāo)表示的共線條件解方
2024-11-19 20:38