【摘要】2020年12月16日星期三學習目標?1.理解空間向量的概念,掌握空間向量的加法運算。?2.用空間向量的運算意義和運算律解決立幾問題。?重點:空間向量的加法、減法運算律。?難點:用向量解決立幾問題.OABC正東正北向上如圖:已知OA=6米,AB=6米,BC=3米,
2025-10-31 08:04
【摘要】第二節(jié)向量及其線性運算一、向量及其幾何表示二、向量的坐標表示三、向量的模與方向角四、向量的線性運算五、向量的分向量表示式六、小結(jié)思考題向量(vector):既有大小又有方向的量.向量表示:以1M為起點,2M為終點的有向線段.1M2M??a?21MM一、向量及其幾何表示
2025-08-21 12:44
【摘要】1北師大版高中數(shù)學選修2-2第二章《變化率與導數(shù)》法門高中姚連省制作2一、教學目標:理解導數(shù)的概念,會利用導數(shù)的幾何意義求曲線上某點處的切線方程。二、教學重點:曲線上一點處的切線斜率的求法教學難點:理解導數(shù)的幾何意義三、教學方法:探析歸納,講練結(jié)合四、教學過程3,它是從眾多實際問
2024-11-12 16:44
【摘要】高二數(shù)學-導數(shù)的定義,幾何意義,運算,單調(diào)性與極最值問題(一)導數(shù)的定義:①在處的導數(shù)(或變化率)記作.②在的導函數(shù)記作.=x2+1的圖象上取一點(1,2)及附近一點(1+Δx,2+Δy),則為(),.C. D.()D. 1-3.①若,則②若f(x)=,則①(C)′=
2025-01-14 12:18
【摘要】2020年12月16日星期三a(k0)ka(k0)k空間向量的數(shù)乘K=0?0abab+OABCOBOAABCAOAOC????空間向量的加減空間向量的加法、減法與數(shù)乘運算bkakbak+??)(數(shù)乘分配律數(shù)乘
2025-10-31 01:05
【摘要】2022/8/171第一節(jié)向量及其線性運算一問題的提出四空間直角坐標系六小結(jié)與思考判斷題二向量的概念三向量的線性運算五利用坐標作向量的線性運算2022/8/172一問題的提出在平面解析幾何中,我們曾經(jīng)用代數(shù)的方法來解決集合問題,空間解析幾何也是按照
2025-07-20 14:17
【摘要】反比例函數(shù)k的幾何意義專項練習1、如圖,矩形AOCB的兩邊OC、OA分別位于軸、軸上,點B的坐標為B(),△ADO沿直線OD翻折,使A點恰好落在對角線OB上的點E處,若點E在一反比例函數(shù)的圖像上,那么該函數(shù)的解析式是.2、如圖,點P在反比例函數(shù)的圖象上,過P點作PA⊥x軸于A點,作PB⊥y軸于B點,矩形OAPB的面積為9,則該反比例函數(shù)的解析式為 .3、如
2025-03-24 23:29
【摘要】2.向量的減法?1.復習?(1)向量加法的定義是什么?定義:求兩個向量和的運算,叫做向量的加法.(2)向量的加法的三角形法則:..,,,,,ACBCABbababaACbBCaABAba???????即的和,記作與叫做則向量作在平面內(nèi)任取一點如圖,已知向量
2025-10-28 16:51
【摘要】空間向量及其運算空間向量及其加減運算教學目標:(1)通過本章的學習,使學生理解空間向量的有關概念。(2)掌握空間向量的加減運算法則、運算律,并通過空間幾何體加深對運算的理解。能力目標:(1)培養(yǎng)學生的類比思想、轉(zhuǎn)化思想,數(shù)形結(jié)合思想,培養(yǎng)探究、研討、綜合自學應用能力。(2)培養(yǎng)學生空間想象能力,能借助圖形理解空
2024-11-24 14:20
【摘要】2020年12月18日星期五學習目標?⒈掌握空間向量夾角和模的概念及表示方法;?⒉掌握兩個向量數(shù)量積的概念、性質(zhì)和計算方法及運算律;?⒊掌握兩個向量數(shù)量積的主要用途,會用它解決立體幾何中的一些簡單問題.?重點:兩個向量的數(shù)量積的計算方法及其應用.?難點:兩個向量數(shù)量積的幾何意義.共面向量定理:如果兩個向量
2024-11-11 21:09
【摘要】1第九章直線、平面、簡單幾何體第講2考點搜索●空間向量的加法、減法與數(shù)乘●空間向量基本定理,以及共線、共面向量定理●空間向量的數(shù)量積及其運算性質(zhì)高考高考猜想1.空間向量的基本運算.2.運用向量方法解決共點、共線、共面以及平行、垂直、夾角、距離等問題.3?1.空間向
2025-08-11 14:44
【摘要】高考總復習.理科.數(shù)學第八章平面向量高考總復習.理科.數(shù)學考綱分解解讀高考總復習.理科.數(shù)學(1)了解向量的實際背景.(2)理解平面向量的概念,理解兩個向量相等的含義.(3)理解向量的幾何表示.2.(1)掌握向量加法、減法的運算,并理解其幾何意義.
2025-08-01 17:58
【摘要】復數(shù)的幾何意義知識回顧實部:通常用字母z表示,即biaz??),(RbRa??虛部其中稱為虛數(shù)單位。i(,)zabiabR???復數(shù):??????????00ba,非純虛數(shù)??00b
2024-11-19 13:12
【摘要】......反比例函數(shù)k的幾何意義專項練習1、如圖,矩形AOCB的兩邊OC、OA分別位于軸、軸上,點B的坐標為B(),△ADO沿直線OD翻折,使A點恰好落在對角線OB上的點E處,若點E在一反比例函數(shù)的圖像上,那么該函數(shù)的解析
【摘要】反比例圖像上的點與坐標軸圍成圖形的面積圖1ANMXYO 一般地,如圖1,過雙曲線上任一點A作x軸、y軸的垂線AM、AN,,所得矩形AMON的面積為:S=AM×AN=|x|×|y|=|xy|. 又∵y=,∴xy=k. ∴=|k|.∴. 這就是說,過雙曲線上任一點,做X軸、Y軸的垂線,所得矩形的面積為|k|,這是系數(shù)k
2025-03-25 01:38