【總結(jié)】08級數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)畢業(yè)論文目錄摘要 I1緒論 11.1課題的研究意義 11.2國內(nèi)外研究現(xiàn)狀 11.3研究目標(biāo) 22關(guān)于獨(dú)立分布的中心極限定理的探討 32.1中心極限定理的提法 32.2獨(dú)立同分布情形的兩個(gè)定理. 32.2.1林德伯格-----勒維中心極限定理 42.2.2隸莫弗——拉普拉斯定理 52.3獨(dú)立不同分布情形
2025-05-12 01:43
【總結(jié)】第五章極限定理X~B(n,p),以Xi表示第i次試驗(yàn)A發(fā)生的次數(shù)???????niiXX1以X表示n重貝努里試驗(yàn)A發(fā)生次數(shù)EX=np,DX=npq,大數(shù)定律??niiX11???????????niiXnE
2025-02-08 16:39
【總結(jié)】題目:中心極限定理及意義課程名稱:概率論與數(shù)理統(tǒng)計(jì)專業(yè)班級:成員組成:聯(lián)系方式:2012年5月25日摘要:本文從隨機(jī)變量序列的各種收斂與他們的關(guān)系談起,通過對概率經(jīng)典定理——中心極限定理在獨(dú)立同分布和
2025-01-17 22:41
【總結(jié)】第四章隨機(jī)變量序列的極限分布,二項(xiàng)分布律的泊松定理,用EXCEL計(jì)算的結(jié)果,獨(dú)立隨機(jī)變量序列累加和的中心極限定理,中心極限定理,,解:,,解:,解:,,這時(shí),,D-L定理的應(yīng)用,解:,,解:,根據(jù)中心...
2024-11-17 00:12
【總結(jié)】信息與計(jì)算科學(xué)《概率論與數(shù)理統(tǒng)計(jì)》教案第四章極限定理一教學(xué)目標(biāo)與要求掌握幾個(gè)大數(shù)定律(馬爾可夫大數(shù)定律,切比曉夫大數(shù)定律,Bernoulli大數(shù)定律,辛欽大數(shù)定律)。二重點(diǎn)和難點(diǎn)重點(diǎn):幾個(gè)大數(shù)定律的內(nèi)容,中心極限定理的內(nèi)容及其應(yīng)用.難點(diǎn):中心極限定理的應(yīng)用三教學(xué)內(nèi)容§一.依分布收斂定義:隨機(jī)變量序列,對應(yīng)的分布函數(shù)列是,如果存在分
2025-08-17 13:11
【總結(jié)】中心極限定理的內(nèi)涵和應(yīng)用在概率論與數(shù)理統(tǒng)計(jì)中,中心極限定理是非常重要的一節(jié)內(nèi)容,而且是概率論與數(shù)理統(tǒng)計(jì)之間承前啟后的一個(gè)重要紐帶。中心極限定理是概率論中討論隨機(jī)變量和的分布以正態(tài)分布為極限的一組定理。這組定理是數(shù)理統(tǒng)計(jì)學(xué)和誤差分析的理論基礎(chǔ),指出了大量隨機(jī)變量之和近似服從于正態(tài)分布的條件。故為了深化同學(xué)們的理解并掌握其重要性,本組組員共同努力,課外深入學(xué)習(xí),詳細(xì)地介紹了中心極限定理的內(nèi)涵及其
2025-07-17 15:27
【總結(jié)】......概率論與數(shù)理統(tǒng)計(jì)教學(xué)設(shè)計(jì)課程名稱經(jīng)濟(jì)應(yīng)用數(shù)學(xué)C課時(shí)50+50=100分鐘任課教師李飛專業(yè)與班級人力資源管理B1601-02市場營銷B1601課型新授課課題中心極限定理學(xué)習(xí)
2025-07-17 15:25
【總結(jié)】中心極限定理-1-本資料來源中心極限定理-2-中心極限定理(CentralLimitTheorem)中心極限定理-3-DefineMeasureAnalyzeImproveControlStep8-Data分析Step9-VitalFewX’的選定?多變量研究
2025-02-26 23:01
【總結(jié)】及中心極限定理定理一設(shè)隨機(jī)變量X1,X2,…,Xn,…相互獨(dú)立,且具有相同的數(shù)學(xué)期望和方差:E(Xk)=?,D(Xk)=?2(k=1,2,…)作前n個(gè)隨機(jī)變量的算術(shù)平均???nkknXnY11}|{|lim??????nnYP(1.1
2025-01-22 07:08
【總結(jié)】1Lebesgue積分的極限定理nff若每個(gè)都可積,則是否可積?已接觸的例子?在Riemann積分或Lebesgue積分框架下考慮問題:在Riemann積分框架下,要附加很強(qiáng)條件,使得積分與極限可以交換次序,而在Lebesgue積分框架下,條件很弱!??nf.f設(shè)是函數(shù)列且按照某種意義收斂到fn
2025-01-19 09:29
【總結(jié)】引例甲、乙兩射手各打了6發(fā)子彈,每發(fā)子彈擊中的環(huán)數(shù)分別為:甲10,7,9,8,10,6,乙8,7,10,9,8,8,問哪一個(gè)射手的技術(shù)較好?解首先比較平均環(huán)數(shù)甲=,乙=§方差有五個(gè)不同數(shù)有四個(gè)
2025-08-04 17:23
【總結(jié)】教學(xué)目的:;,著重講解用正態(tài)分布計(jì)算其它分布的方法;教學(xué)內(nèi)容:第四章,§第十六講中心極限定理中心極限定理:概率論中有關(guān)隨機(jī)變量的和的極限分布是正態(tài)分布的系列定理。設(shè)隨機(jī)變量序列12,,,,nXXX相互獨(dú)立,且有期望和方差:2(
2025-05-12 18:47
【總結(jié)】習(xí)題2-11.觀察下列數(shù)列的變化趨勢,寫出其極限:(1); (2);(3); (4).解:(1)此數(shù)列為所以。(2)所以原數(shù)列極限不存在。(3)所以。(4)所以:(1)收斂數(shù)列一定有界; (2)有界數(shù)列一定收斂;(3)無界數(shù)列一定發(fā)散;(4)極限大于0的數(shù)列的通項(xiàng)也一定
2025-06-07 14:14
【總結(jié)】莊文忠副教授世新大學(xué)行政管理學(xué)系2020/11/4SPSS之應(yīng)用(莊文忠副教授)1中央極限定理的驗(yàn)證課程大綱2020/11/4SPSS之應(yīng)用(莊文忠副教授)2?抽樣與抽樣分配?中央極限定理的意涵?重復(fù)隨機(jī)抽樣(n=25,n=100,n=400)?樣本平均數(shù)的分布?樣本平均數(shù)的平均數(shù)與母體平
2024-09-29 16:26
【總結(jié)】數(shù)字特征與極限定理在前面的課程中,我們討論了隨機(jī)變量及其分布,如果知道了隨機(jī)變量X的概率分布,那么X的全部概率特征也就知道了.f(x)xoxP(x)o然而,在實(shí)際問題中,概率分布一般是較難確定的.而在一些實(shí)際應(yīng)用中,人們并不需要知道隨機(jī)變量的一切概率性質(zhì),只要知道它的某些數(shù)字特
2025-08-23 15:06