【總結(jié)】二次函數(shù)的應(yīng)用第二章學(xué)習(xí)的目的在于應(yīng)用,日常生活中,工農(nóng)業(yè)生產(chǎn)及商業(yè)活動中,方案的最優(yōu)化、最值問題,如盈利最大、用料最省、設(shè)計最佳等都與二次函數(shù)有關(guān)。一、根據(jù)已知函數(shù)的表達式解決實際問題:0xyhAB
2024-12-08 14:25
【總結(jié)】九年級數(shù)學(xué)下冊二次函數(shù)回顧與思考?定義:一般地,形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù)。?圖象:是一條拋物線。?圖象的特點:(1)有開口方向,開口大小。(2)有對稱軸。(3)有頂點(最低點或最高點)。oxyoxy?二次函數(shù)
2024-11-30 08:16
【總結(jié)】函數(shù)函數(shù)知多少變量之間的關(guān)系一次函數(shù)y=kx+b(k≠0)反比例函數(shù)二次函數(shù)正比例函數(shù)y=kx(k≠0)??.0??kxky溫故知新回顧與思考噴泉(1)噴泉(2)九年級數(shù)學(xué)(下)第二章《二次函數(shù)》§2、1二次函數(shù)所描述的關(guān)系二次
2024-11-30 08:35
【總結(jié)】第二章二次函數(shù)單元1(1~3)二次函數(shù)所描述的關(guān)系,結(jié)識拋物線剎車距離與二次函數(shù)典型例題分析[例1]某商店經(jīng)銷一種銷售成本為每千克40元的產(chǎn)品,據(jù)市場分析,若按每千克50元銷售,一個月能銷售出500千克;銷售單價每漲1元,月銷售量就減少10千克,針對這種產(chǎn)品的銷售情況,請解答以下問題:(1)當(dāng)銷售單價定為每千克
2024-12-08 23:30
【總結(jié)】溫故而知新函數(shù)y=x2和y=-x2的圖像x262-2-4y=x2y=-x2圖像形狀開口方向?qū)ΨQ軸頂點坐標(biāo)函數(shù)y=x2y=-x2拋物線拋物線向上向下y軸y軸(0,0)(0,0)
【總結(jié)】回顧&思考?④二次函數(shù)y=kx+b(k≠0)y=kx(k≠0)函數(shù)變量之間的關(guān)系②一次函數(shù)③反比例函數(shù)①正比例函數(shù)創(chuàng)設(shè)&情境二次函數(shù)所描述的關(guān)系創(chuàng)設(shè)&情境圓的半徑是xcm,圓的面積為ycm2,寫出y與x之間的函數(shù)
2024-11-06 15:28
【總結(jié)】第四節(jié)二次函數(shù)y=ax2+bx+c的圖象(二)函數(shù)表達式開口方向增減性對稱軸頂點坐標(biāo)2axy?caxy??2??2hxay??a0,開口向上;a0,開口向下.)0(?xy直線軸)0,0()0(?xy直線軸),0(chx?直線)0,(h??khxay??
2024-11-30 08:17
【總結(jié)】函數(shù)函數(shù)知多少變量之間的關(guān)系一次函數(shù)y=kx+b(k≠0)反比例函數(shù)二次函數(shù)正比例函數(shù)y=kx(k≠0)??.0??kxky溫故知新二次函數(shù)第二章二次函數(shù)某果園有100棵橙子樹,每一棵樹平均結(jié)600個橙子.現(xiàn)準(zhǔn)備多種一些橙子樹以提高產(chǎn)量,但是
2024-12-07 21:22
【總結(jié)】二次函數(shù)的圖像及性質(zhì)y=ax2+c可由y=ax2的圖像上下平移而得到當(dāng)c0時,向上平移c個單位;當(dāng)c0時,向下平移︱c︱個單位。上一節(jié)我們從探索y=3x2的圖像出發(fā),研究了y=ax2及y=ax2+c的圖像和性質(zhì)問題1函數(shù)y=ax2+c和函數(shù)y=ax
2024-11-18 21:18
【總結(jié)】第二章《二次函數(shù)》復(fù)習(xí)課教案復(fù)習(xí)目標(biāo):知識目標(biāo):1、了解二次函數(shù)解析式的三種表示方法;2、拋物線的開口方向、頂點坐標(biāo)、對稱軸以及拋物線與對稱軸的交點坐標(biāo)等;3、一元二次方程與拋物線的結(jié)合與應(yīng)用。4、利用二次函數(shù)解決實際問題。技能目標(biāo):培養(yǎng)學(xué)生運用函數(shù)知識與幾何知識解決數(shù)學(xué)綜合題和實際問
2024-11-19 07:54
【總結(jié)】二次函數(shù)復(fù)習(xí)說一說:通過二次函數(shù)的學(xué)習(xí),你應(yīng)該學(xué)什么?你學(xué)會了什么?1、理解二次函數(shù)的概念;2、會用描點法畫出二次函數(shù)的圖象;3、會用配方法和公式確定拋物線的開口方向,對稱軸,頂點坐標(biāo);4、會用待定系數(shù)法求二次函數(shù)的解析式;5、能用二次函數(shù)的知識解決生活中的實際問題及簡單的綜合運用。
2024-12-07 15:23
【總結(jié)】第4頁共4頁更多資料請訪問北師大2005屆初中數(shù)學(xué)同步復(fù)習(xí)檢測題17姓名(第三章函數(shù)與一次函數(shù)第四講二次函數(shù)1)一.填空題:1.二次函數(shù)的圖象與軸的交點為,與軸的交點為;2.當(dāng),函數(shù)的函數(shù)值為;3.已知的對稱軸是
2025-01-14 18:43
【總結(jié)】第二章二次函數(shù)第1節(jié)二次函數(shù)所描述的關(guān)系本節(jié)內(nèi)容:二次函數(shù)的定義列函數(shù)關(guān)系式(重點)1、二次函數(shù)的定義一般地,形如的二次函數(shù)。的函數(shù)叫做是常數(shù),xacbacbxaxy)0,,(2????例如:的二次函數(shù)。等等都是xxyxxyxxy13,2,32222????????在理解二次函數(shù)的
2024-12-08 17:49
【總結(jié)】1二次函數(shù)第二章二次函數(shù)課堂達標(biāo)素養(yǎng)提升第二章二次函數(shù)1二次函數(shù)課堂達標(biāo)一、選擇題1二次函數(shù)1.2022·浦東新區(qū)一模下列函數(shù)中,是二次函數(shù)的是()A.y=-4x+5B.y=x(2x-3)C
2025-06-18 03:06
【總結(jié)】章末熱點考向?qū)n}專題一恰當(dāng)選擇確定二次函數(shù)表達式的方法求二次函數(shù)的解析式時,通常有三種設(shè)法:(1)一般式:y=ax2+bx+c;(2)頂點式:y=a(x-h(huán))2+k;(3)交點式:y=a(x-x1)(x-x2),其中x1、x2是拋物線與x軸交點的橫坐標(biāo).例1:已知二次函數(shù)圖象