【總結(jié)】第四節(jié)二次函數(shù)y=ax2+bx+c的圖象(二)函數(shù)表達(dá)式開口方向增減性對稱軸頂點(diǎn)坐標(biāo)2axy?caxy??2??2hxay??a0,開口向上;a0,開口向下.)0(?xy直線軸)0,0()0(?xy直線軸),0(chx?直線)0,(h??khxay??
2024-11-30 08:17
【總結(jié)】函數(shù)函數(shù)知多少變量之間的關(guān)系一次函數(shù)y=kx+b(k≠0)反比例函數(shù)二次函數(shù)正比例函數(shù)y=kx(k≠0)??.0??kxky溫故知新回顧與思考噴泉(1)噴泉(2)九年級數(shù)學(xué)(下)第二章《二次函數(shù)》§2、1二次函數(shù)所描述的關(guān)系二次
2024-11-30 08:35
【總結(jié)】函數(shù)函數(shù)知多少變量之間的關(guān)系一次函數(shù)y=kx+b(k≠0)反比例函數(shù)二次函數(shù)正比例函數(shù)y=kx(k≠0)??.0??kxky溫故知新二次函數(shù)第二章二次函數(shù)某果園有100棵橙子樹,每一棵樹平均結(jié)600個(gè)橙子.現(xiàn)準(zhǔn)備多種一些橙子樹以提高產(chǎn)量,但是
2024-12-07 21:22
【總結(jié)】二次函數(shù)的圖像及性質(zhì)y=ax2+c可由y=ax2的圖像上下平移而得到當(dāng)c0時(shí),向上平移c個(gè)單位;當(dāng)c0時(shí),向下平移︱c︱個(gè)單位。上一節(jié)我們從探索y=3x2的圖像出發(fā),研究了y=ax2及y=ax2+c的圖像和性質(zhì)問題1函數(shù)y=ax2+c和函數(shù)y=ax
2024-11-18 21:18
【總結(jié)】8.二次函數(shù)與一元二次方程1.二次函數(shù)圖象與一元一次方程的關(guān)系二次函數(shù)y=ax2+bx+c的圖象與x軸的交點(diǎn)有三種情況:有______個(gè)交點(diǎn)、有一個(gè)交點(diǎn)、______交點(diǎn),當(dāng)二次函數(shù)y=ax2+bx+c的圖象與x軸有交點(diǎn)時(shí),交點(diǎn)的橫坐標(biāo)就是當(dāng)y=0時(shí)自變量x的值,即一元二次方程ax2+b
2024-12-08 14:25
【總結(jié)】二次函數(shù)cbxaxy???2的圖象(第二課時(shí))清城中學(xué)【教材分析】本節(jié)課內(nèi)容是北師版教材九年級下冊第二章第4節(jié)《二次函數(shù)cbxaxy???2的圖象》的第二課時(shí)。是在前面已經(jīng)學(xué)習(xí)、探究了函數(shù)2yax?和函數(shù)2yaxc??的圖象與性質(zhì)后,繼續(xù)探究具有普遍意義和形式的函數(shù)cbx
2024-11-19 00:52
【總結(jié)】第二章二次函數(shù)第1節(jié)二次函數(shù)所描述的關(guān)系本節(jié)內(nèi)容:二次函數(shù)的定義列函數(shù)關(guān)系式(重點(diǎn))1、二次函數(shù)的定義一般地,形如的二次函數(shù)。的函數(shù)叫做是常數(shù),xacbacbxaxy)0,,(2????例如:的二次函數(shù)。等等都是xxyxxyxxy13,2,32222????????在理解二次函數(shù)的
2024-12-08 17:49
【總結(jié)】復(fù)習(xí)提問1、二次函數(shù)的解析式有哪幾種形式??(1)、一般式:y=ax2+bx+c?(2)、頂點(diǎn)式:y=a(x-h)2+k?(3)、交點(diǎn)式:y=a(x-x1)(x-x2)?2、二次函數(shù)y=ax2+bx+c的頂點(diǎn)坐標(biāo)、對稱軸是什么??頂點(diǎn)坐標(biāo)是(,)
2024-11-06 21:11
【總結(jié)】隨著人民生活水平的提高,小轎車越來越多,為了交通安全,某市政府要修建10m高的天橋,為了方便行人推車過天橋,需在天橋兩端修建40m長的斜道.(如圖所示,用多媒體演示)這條斜道的傾斜角是多少?.已知三角函數(shù)求角度,要用到sin.cos和tan鍵的第二功能“sin-1,cos-1,tan-1”和shift鍵例如:已
2024-08-25 01:06
【總結(jié)】二次函數(shù)復(fù)習(xí)說一說:通過二次函數(shù)的學(xué)習(xí),你應(yīng)該學(xué)什么?你學(xué)會了什么?1、理解二次函數(shù)的概念;2、會用描點(diǎn)法畫出二次函數(shù)的圖象;3、會用配方法和公式確定拋物線的開口方向,對稱軸,頂點(diǎn)坐標(biāo);4、會用待定系數(shù)法求二次函數(shù)的解析式;5、能用二次函數(shù)的知識解決生活中的實(shí)際問題及簡單的綜合運(yùn)用。
2024-12-08 05:33
【總結(jié)】章末熱點(diǎn)考向?qū)n}專題一恰當(dāng)選擇確定二次函數(shù)表達(dá)式的方法求二次函數(shù)的解析式時(shí),通常有三種設(shè)法:(1)一般式:y=ax2+bx+c;(2)頂點(diǎn)式:y=a(x-h(huán))2+k;(3)交點(diǎn)式:y=a(x-x1)(x-x2),其中x1、x2是拋物線與x軸交點(diǎn)的橫坐標(biāo).例1:已知二次函數(shù)圖象
【總結(jié)】4.二次函數(shù)y=ax2+bx+c的圖象1.二次函數(shù)y=a(x-h(huán))2和y=a(x-h(huán))2+k的圖象與性質(zhì)(1)函數(shù)y=2(x-1)2的對稱軸是_______,頂點(diǎn)坐標(biāo)是_______,當(dāng)x1時(shí),函數(shù)值隨x的增大而_______,當(dāng)x
2024-11-30 08:37
【總結(jié)】y=ax2+bx+c想一想函數(shù)y=ax2+bx+c的圖象?二次函數(shù)y=3(x-1)2+2的圖象是什么形狀?它與我們已經(jīng)作過的二次函數(shù)的圖象有什么關(guān)系??在同一坐標(biāo)系中作出二次函數(shù)y=3x2和y=3(x-1)2的圖象。比較二次函數(shù)y=3x2和y=3(x-1)2的圖象。?⑴完成下表,并比較3x2和3(x-
【總結(jié)】復(fù)習(xí):1、什么是函數(shù)?2、什么叫做一次函數(shù)?3、什么叫做反比例函數(shù)?4、函數(shù)有哪些表示方法?在某個(gè)變化過程中,有兩個(gè)變量x和y,如果對于x的每一個(gè)可取的值,都有唯一一個(gè)y值與它對應(yīng),那么y稱為x的函數(shù)。形如y=kx+b(k、b為常數(shù),k≠0)形如y=(k為常數(shù),
【總結(jié)】50/50
2025-06-26 11:53