【總結(jié)】第二章二次函數(shù)1二次函數(shù)1.探索并歸納二次函數(shù)的定義.2.能夠表示簡單變量之間的二次函數(shù)關(guān)系.函數(shù)變量之間的關(guān)系一次函數(shù)y=kx+b(k≠0)反比例函數(shù)二次函數(shù)正比例函數(shù)y=kx(k≠0)??.0??kxky某果園有100棵橙子樹,每一棵樹平均結(jié)600個橙子.
2025-06-15 02:59
2025-06-15 02:53
【總結(jié)】第二章二次函數(shù)1二次函數(shù)【基礎梳理】二次函數(shù)的定義及相關(guān)概念若兩個變量x,y之間的對應關(guān)系可以表示成__________(a,b,c為常數(shù),a≠0)的形式,則稱y是x的二次函數(shù).其中__是二次項系數(shù),__是一次項系數(shù),__是常數(shù)項.y=ax2+bx+cabc【自我診斷】1.(1)y=
2025-06-12 12:36
2025-06-21 02:27
【總結(jié)】數(shù)學·新課標(BS)下冊第二章復習(二)┃知識歸類┃知識歸納┃數(shù)學·新課標(BS)1.利用二次函數(shù)求最值的問題(1)利潤最大化——體會利用二次函數(shù)求解最值的一般步驟.利用二次函數(shù)解決“利潤最大化”問題的一般步驟:①找出銷售單價與利潤之間的函數(shù)關(guān)系式(注明范圍);②求出
2024-12-07 22:58
【總結(jié)】第二章時間:120分鐘滿分:120分一、精心選一選(每小題3分,共30分)1.已知拋物線y=ax2+bx+c的開口向上,頂點坐標為(3,-2),那么該拋物線有(A)A.最小值-2B.最大值-2C.最小值3D.最大值32.如果將拋物線y=x2+2向下平移1個單位,那么
2024-11-28 01:28
【總結(jié)】數(shù)學·新課標(BS)下冊第二章復習(一)┃知識歸類┃知識歸納┃數(shù)學·新課標(BS)1.二次函數(shù)的概念一般地,形如(a,b,c是常數(shù),)的函數(shù),叫做二次函數(shù).[注意](1)等號右邊必須是整式;(2)自變量的最高次數(shù)
【總結(jié)】第二章二次函數(shù)一、選擇題1.拋物線y=-3x2+2x-l的圖象與坐標軸的交點個數(shù)是()A.無交點B.1個C.2個D.3個2、拋物線y=-2x2-4x-5經(jīng)過平移后得到拋物線y=-2x2,平移方法是()A.向左平移1個單位,再向下平移3
2024-11-28 19:21
【總結(jié)】函數(shù)函數(shù)知多少變量之間的關(guān)系一次函數(shù)y=kx+b(k≠0)反比例函數(shù)二次函數(shù)正比例函數(shù)y=kx(k≠0)??.0??kxky溫故知新回顧與思考二次函數(shù)素描述的關(guān)系源于生活的數(shù)學某果園有100棵橙子樹,每一棵樹平均結(jié)600個
2024-12-08 11:41
【總結(jié)】第二章二次函數(shù)知識點1二次函數(shù)的概念y=ax2+bx+c(a,b,c是常數(shù))是二次函數(shù)的條件是(C)≠0且b≠0≠0且b≠0,c≠0≠0,b,c為任意實數(shù)2.若y=(m2+m)????2-2??-1是二次函數(shù),則m的值是(D)A.1±2
2025-06-18 00:42
【總結(jié)】拋物線y=x2y=-x2頂點坐標對稱軸位置開口方向增減性最值(0,0)(0,0)y軸y軸在x軸的上方在x軸的下方向上向下最小值為0最大值為0二次函數(shù)y=x2與y=-x2的性質(zhì)如圖所示如圖所示2xy?2xy??
2024-12-08 14:25
【總結(jié)】二次函數(shù)學習目標:探索并歸納二次函數(shù)的定義.能夠表示簡單變量之間的二次函數(shù)關(guān)系.學習重點:,獲得用二次函數(shù)表示變量之間關(guān)系的體驗..學習難點:用二次函數(shù)表示變量之間關(guān)系一、回顧導學1、一次函數(shù)的一般形式為y=___________(其中_______________)2、反比例函數(shù)的一般形式為y=_
2024-11-19 07:21
【總結(jié)】九年級數(shù)學(上)第二章二次函數(shù)回顧與思考----二次函數(shù)小結(jié)回顧與思考?“身影”?用語言或圖形進行描述.??與同伴交流.?.??如何確定它的開口方向,對稱軸和頂點坐標?請用具體例子進行說明.?數(shù)的表達式,表格和圖象刻畫變量之間的關(guān)系.?y=ax2+bx+c的圖
2024-12-08 11:56
【總結(jié)】第二章二次函數(shù)一、學生知識狀況分析學生的知識技能基礎:學生在之前已經(jīng)學習過變量、自變量、因變量、函數(shù)等概念,對一次函數(shù)、反比例函數(shù)的相關(guān)知識如:各種變量、函數(shù)的一般形式、圖像、增減性等知識有一定基礎,相關(guān)應用也較常見,學生在學二次函數(shù)前具備了一定函數(shù)方面的基礎知識、基本技能。學生活動經(jīng)驗基礎:在相關(guān)知識的學習過程中,學生已經(jīng)經(jīng)歷了一些解
2024-11-18 22:14
【總結(jié)】第二章二次函數(shù)y=ax2+bx+c的圖象(一)一、學生知識狀況分析學生的知識技能基礎:學生在前面幾節(jié)課已經(jīng)學習過并能夠獨立作出一個二次函數(shù)的圖像,掌握了二次函數(shù)y=ax2和y=ax2+c的一般性質(zhì)。學生活動經(jīng)驗基礎:在相關(guān)知識的學習過程中,學生已經(jīng)經(jīng)歷了二次函數(shù)y=ax2和y=ax2+c的性質(zhì)的探索過程,在探究過程中體會到了
2024-12-09 08:13