【導(dǎo)讀】我們把這座大橋放入平面直角坐標(biāo)系內(nèi)進行研究,直角坐標(biāo)系,設(shè)兩個橋墩AC,BD長各為5個單位長度,AO,BO,各為10個單位長度,拋物線的最低點經(jīng)過(0,1),求圖中紅色吊柱EF的長。寬和高各是多少m時,窗戶的透光面積最大?∵,x=1屬于0<x<2的范圍內(nèi),練習(xí)1如圖,用長20的籬笆,一面靠地如圖(二)時,最大矩形的相鄰。例3如圖,B船位于A船正東26km處。最近距離是多少?
【總結(jié)】拋物線y=x2y=-x2頂點坐標(biāo)對稱軸位置開口方向增減性最值(0,0)(0,0)y軸y軸在x軸的上方在x軸的下方向上向下最小值為0最大值為0二次函數(shù)y=x2與y=-x2的性質(zhì)如圖所示如圖所示2xy?2xy??
2024-12-08 14:39
【總結(jié)】函數(shù)函數(shù)知多少變量之間的關(guān)系一次函數(shù)y=kx+b(k≠0)反比例函數(shù)二次函數(shù)正比例函數(shù)y=kx(k≠0)??.0??kxky溫故知新回顧與思考二次函數(shù)素描述的關(guān)系源于生活的數(shù)學(xué)某果園有100棵橙子樹,每一棵樹平均結(jié)600個
2024-12-08 11:41
2024-12-08 14:25
【總結(jié)】[復(fù)習(xí)要求](1)能在具體情境中體會一次函數(shù)的意義;(2)能根據(jù)所給信息確定一次函數(shù)表達式;(3)會畫一次函數(shù)的圖象,能根據(jù)一次函數(shù)的圖象和表達式理解其性質(zhì);(4)能利用一次函數(shù)及其圖象解決簡單的實際問題;(5)初步體會方程和函數(shù)的關(guān)系.知識點回顧與強化(1)一次函數(shù)的解析式是,圖象是
2024-11-06 12:02
【總結(jié)】二次函數(shù)的最值問題重點掌握閉區(qū)間上的二函數(shù)的最值問題難點了解并會處理含參數(shù)的二次函數(shù)的最值問題核心區(qū)間與對稱軸的相對位置思想數(shù)形結(jié)合分類討論復(fù)習(xí)引入頂點式:y=a(x-m)2+n(a0)兩根式:y=a(x-x1)(x-x2)(a0)
2024-11-18 13:33
【總結(jié)】問題1說出下列函數(shù)的開口方向、對稱軸、頂點(1)y=(x+2)2-1;(2)y=-(x-2)2+2;(3)y=a(x+h)2+k.(1)y=x2和y=ax2(a?0)的圖像之間有什么關(guān)系?問題2(2)y=ax2和y=a(x+h)2+k
【總結(jié)】二次函數(shù)的應(yīng)用第二章學(xué)習(xí)的目的在于應(yīng)用,日常生活中,工農(nóng)業(yè)生產(chǎn)及商業(yè)活動中,方案的最優(yōu)化、最值問題,如盈利最大、用料最省、設(shè)計最佳等都與二次函數(shù)有關(guān)。一、根據(jù)已知函數(shù)的表達式解決實際問題:0xyhAB
【總結(jié)】九年級數(shù)學(xué)下冊二次函數(shù)回顧與思考?定義:一般地,形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù)。?圖象:是一條拋物線。?圖象的特點:(1)有開口方向,開口大小。(2)有對稱軸。(3)有頂點(最低點或最高點)。oxyoxy?二次函數(shù)
2024-11-30 08:16
【總結(jié)】函數(shù)函數(shù)知多少變量之間的關(guān)系一次函數(shù)y=kx+b(k≠0)反比例函數(shù)二次函數(shù)正比例函數(shù)y=kx(k≠0)??.0??kxky溫故知新回顧與思考噴泉(1)噴泉(2)九年級數(shù)學(xué)(下)第二章《二次函數(shù)》§2、1二次函數(shù)所描述的關(guān)系二次
2024-11-30 08:35
【總結(jié)】第二章二次函數(shù)單元1(1~3)二次函數(shù)所描述的關(guān)系,結(jié)識拋物線剎車距離與二次函數(shù)典型例題分析[例1]某商店經(jīng)銷一種銷售成本為每千克40元的產(chǎn)品,據(jù)市場分析,若按每千克50元銷售,一個月能銷售出500千克;銷售單價每漲1元,月銷售量就減少10千克,針對這種產(chǎn)品的銷售情況,請解答以下問題:(1)當(dāng)銷售單價定為每千克
2024-12-08 23:30
【總結(jié)】溫故而知新函數(shù)y=x2和y=-x2的圖像x262-2-4y=x2y=-x2圖像形狀開口方向?qū)ΨQ軸頂點坐標(biāo)函數(shù)y=x2y=-x2拋物線拋物線向上向下y軸y軸(0,0)(0,0)
【總結(jié)】回顧&思考?④二次函數(shù)y=kx+b(k≠0)y=kx(k≠0)函數(shù)變量之間的關(guān)系②一次函數(shù)③反比例函數(shù)①正比例函數(shù)創(chuàng)設(shè)&情境二次函數(shù)所描述的關(guān)系創(chuàng)設(shè)&情境圓的半徑是xcm,圓的面積為ycm2,寫出y與x之間的函數(shù)
2024-11-06 15:28
【總結(jié)】第四節(jié)二次函數(shù)y=ax2+bx+c的圖象(二)函數(shù)表達式開口方向增減性對稱軸頂點坐標(biāo)2axy?caxy??2??2hxay??a0,開口向上;a0,開口向下.)0(?xy直線軸)0,0()0(?xy直線軸),0(chx?直線)0,(h??khxay??
2024-11-30 08:17
【總結(jié)】函數(shù)函數(shù)知多少變量之間的關(guān)系一次函數(shù)y=kx+b(k≠0)反比例函數(shù)二次函數(shù)正比例函數(shù)y=kx(k≠0)??.0??kxky溫故知新二次函數(shù)第二章二次函數(shù)某果園有100棵橙子樹,每一棵樹平均結(jié)600個橙子.現(xiàn)準(zhǔn)備多種一些橙子樹以提高產(chǎn)量,但是
2024-12-07 21:22
【總結(jié)】二次函數(shù)的圖像及性質(zhì)y=ax2+c可由y=ax2的圖像上下平移而得到當(dāng)c0時,向上平移c個單位;當(dāng)c0時,向下平移︱c︱個單位。上一節(jié)我們從探索y=3x2的圖像出發(fā),研究了y=ax2及y=ax2+c的圖像和性質(zhì)問題1函數(shù)y=ax2+c和函數(shù)y=ax
2024-11-18 21:18