【導(dǎo)讀】你知道兩輛汽車在行駛時為什么要保持一定距離嗎?影響剎車距離的最主要因素是汽車行駛的速度及路面的。稱軸都是y軸;增減性也相同.一樣,仍是拋物線.它的開口方向、對稱。致圖象和位置嗎?二次函數(shù)y=ax2與y=ax2+c的圖象有什么關(guān)系?的圖象向上平移c個單位得到.們與y=x2的異同,理解a與c對二次函數(shù)圖象的影響.軸和頂點坐標(biāo),以及它們之間的聯(lián)系.y=-5x2有最大值或最小值嗎?是最大值還是最小值?
【總結(jié)】第四節(jié)二次函數(shù)y=ax2+bx+c的圖象(二)函數(shù)表達式開口方向增減性對稱軸頂點坐標(biāo)2axy?caxy??2??2hxay??a0,開口向上;a0,開口向下.)0(?xy直線軸)0,0()0(?xy直線軸),0(chx?直線)0,(h??khxay??
2024-11-30 08:17
【總結(jié)】函數(shù)函數(shù)知多少變量之間的關(guān)系一次函數(shù)y=kx+b(k≠0)反比例函數(shù)二次函數(shù)正比例函數(shù)y=kx(k≠0)??.0??kxky溫故知新二次函數(shù)第二章二次函數(shù)某果園有100棵橙子樹,每一棵樹平均結(jié)600個橙子.現(xiàn)準(zhǔn)備多種一些橙子樹以提高產(chǎn)量,但是
2024-12-07 21:22
【總結(jié)】溫州外國語學(xué)校曾小豆九年級下冊(北師大版)教材分析●體現(xiàn)“問題情境——建立數(shù)學(xué)模型——概念、規(guī)律、應(yīng)用與拓展”的模式:?從實際問題情境中抽象二次函數(shù)函數(shù)概念?研究二次函數(shù)的圖象及其有關(guān)性質(zhì)?二次函數(shù)的應(yīng)用與聯(lián)系1設(shè)計思路二次函數(shù)1.二次函數(shù)所描述的關(guān)系(引
2024-11-09 06:17
【總結(jié)】二次函數(shù)的圖像及性質(zhì)y=ax2+c可由y=ax2的圖像上下平移而得到當(dāng)c0時,向上平移c個單位;當(dāng)c0時,向下平移︱c︱個單位。上一節(jié)我們從探索y=3x2的圖像出發(fā),研究了y=ax2及y=ax2+c的圖像和性質(zhì)問題1函數(shù)y=ax2+c和函數(shù)y=ax
2024-11-18 21:18
【總結(jié)】二次函數(shù)cbxaxy???2的圖象(第二課時)清城中學(xué)【教材分析】本節(jié)課內(nèi)容是北師版教材九年級下冊第二章第4節(jié)《二次函數(shù)cbxaxy???2的圖象》的第二課時。是在前面已經(jīng)學(xué)習(xí)、探究了函數(shù)2yax?和函數(shù)2yaxc??的圖象與性質(zhì)后,繼續(xù)探究具有普遍意義和形式的函數(shù)cbx
2024-11-19 00:52
【總結(jié)】第二章二次函數(shù)第1節(jié)二次函數(shù)所描述的關(guān)系本節(jié)內(nèi)容:二次函數(shù)的定義列函數(shù)關(guān)系式(重點)1、二次函數(shù)的定義一般地,形如的二次函數(shù)。的函數(shù)叫做是常數(shù),xacbacbxaxy)0,,(2????例如:的二次函數(shù)。等等都是xxyxxyxxy13,2,32222????????在理解二次函數(shù)的
2024-12-08 17:49
【總結(jié)】想一想復(fù)習(xí)回顧y=ax2+bx+c(a≠0)ax2+bx+c=0(a≠0)ax2+bx+c>0(a≠0)北師大版九年級數(shù)學(xué)(下)第二章說一說問題探究1、二次函數(shù)y=x2-2x-3的圖象的對稱軸和頂點坐標(biāo)分別是什么?與y軸的交點呢?2、你能做出它的大致圖象嗎
2024-12-08 10:53
【總結(jié)】4.二次函數(shù)y=ax2+bx+c的圖象1.二次函數(shù)y=a(x-h(huán))2和y=a(x-h(huán))2+k的圖象與性質(zhì)(1)函數(shù)y=2(x-1)2的對稱軸是_______,頂點坐標(biāo)是_______,當(dāng)x1時,函數(shù)值隨x的增大而_______,當(dāng)x
2024-11-30 08:37
【總結(jié)】二次函數(shù)復(fù)習(xí)說一說:通過二次函數(shù)的學(xué)習(xí),你應(yīng)該學(xué)什么?你學(xué)會了什么?1、理解二次函數(shù)的概念;2、會用描點法畫出二次函數(shù)的圖象;3、會用配方法和公式確定拋物線的開口方向,對稱軸,頂點坐標(biāo);4、會用待定系數(shù)法求二次函數(shù)的解析式;5、能用二次函數(shù)的知識解決生活中的實際問題及簡單的綜合運用。
2024-12-08 05:33
【總結(jié)】章末熱點考向?qū)n}專題一恰當(dāng)選擇確定二次函數(shù)表達式的方法求二次函數(shù)的解析式時,通常有三種設(shè)法:(1)一般式:y=ax2+bx+c;(2)頂點式:y=a(x-h(huán))2+k;(3)交點式:y=a(x-x1)(x-x2),其中x1、x2是拋物線與x軸交點的橫坐標(biāo).例1:已知二次函數(shù)圖象
2024-12-08 14:25
【總結(jié)】y=ax2+bx+c想一想函數(shù)y=ax2+bx+c的圖象?二次函數(shù)y=3(x-1)2+2的圖象是什么形狀?它與我們已經(jīng)作過的二次函數(shù)的圖象有什么關(guān)系??在同一坐標(biāo)系中作出二次函數(shù)y=3x2和y=3(x-1)2的圖象。比較二次函數(shù)y=3x2和y=3(x-1)2的圖象。?⑴完成下表,并比較3x2和3(x-
【總結(jié)】復(fù)習(xí):1、什么是函數(shù)?2、什么叫做一次函數(shù)?3、什么叫做反比例函數(shù)?4、函數(shù)有哪些表示方法?在某個變化過程中,有兩個變量x和y,如果對于x的每一個可取的值,都有唯一一個y值與它對應(yīng),那么y稱為x的函數(shù)。形如y=kx+b(k、b為常數(shù),k≠0)形如y=(k為常數(shù),
【總結(jié)】二次函數(shù)y=a(x–h)2的圖象和性質(zhì).當(dāng)h0時,向右平移當(dāng)h0時,向左平移y=ax2y=a(x–h)2y=-x2的圖象得到y(tǒng)=-x2-3的圖象。并說明后者圖象的頂點,對稱軸,增減性。y=2x2的圖象得到y(tǒng)=2(x-3)2的圖象。并說明后者圖象的頂點,對稱軸,增減性。Oxy12
2024-11-30 02:42
【總結(jié)】第二章二次函數(shù)一、學(xué)生知識狀況分析學(xué)生的知識技能基礎(chǔ):學(xué)生在之前已經(jīng)學(xué)習(xí)過變量、自變量、因變量、函數(shù)等概念,對一次函數(shù)、反比例函數(shù)的相關(guān)知識如:各種變量、函數(shù)的一般形式、圖像、增減性等知識有一定基礎(chǔ),相關(guān)應(yīng)用也較常見,學(xué)生在學(xué)二次函數(shù)前具備了一定函數(shù)方面的基礎(chǔ)知識、基本技能。學(xué)生活動經(jīng)驗基礎(chǔ):在相關(guān)知識的學(xué)習(xí)過程中,學(xué)生已經(jīng)經(jīng)歷了一些解
2024-11-18 22:14
【總結(jié)】第二章二次函數(shù)y=ax2+bx+c的圖象(一)一、學(xué)生知識狀況分析學(xué)生的知識技能基礎(chǔ):學(xué)生在前面幾節(jié)課已經(jīng)學(xué)習(xí)過并能夠獨立作出一個二次函數(shù)的圖像,掌握了二次函數(shù)y=ax2和y=ax2+c的一般性質(zhì)。學(xué)生活動經(jīng)驗基礎(chǔ):在相關(guān)知識的學(xué)習(xí)過程中,學(xué)生已經(jīng)經(jīng)歷了二次函數(shù)y=ax2和y=ax2+c的性質(zhì)的探索過程,在探究過程中體會到了
2024-12-09 08:13