【總結(jié)】函數(shù)的最值 知識梳理1.函數(shù)最大值一般地,設(shè)函數(shù)的定義域為.如果存在實數(shù)滿足:①對于任意都有.②存在,使得.那么,稱是函數(shù)的最大值.2.函數(shù)最小值一般地,設(shè)函數(shù)的定義域為.如果存在實數(shù)滿足:①對于任意都有.②存在,使得.那么,稱是函數(shù)的最小值.注意:對于一個函數(shù)來說,不一定有最值,若有最值,則最值一定是值域中的一個元素.3.函數(shù)的最值
2025-06-18 23:47
【總結(jié)】函數(shù)的單調(diào)性一、選擇題1.下列函數(shù)中,在區(qū)間上為增函數(shù)的是(??).A.? B.????C. D.2.函數(shù)的增區(qū)間是(??)。A.?B. C.?D.3.在上是減函數(shù),則a的取值范圍是(?)?!
2025-03-24 12:15
【總結(jié)】單調(diào)性與最大(小)值第三課時函數(shù)的最值問題提出?,如果函數(shù)的圖象存在最高點或最低點,它又反映了函數(shù)的什么性質(zhì)?知識探究(一)觀察下列兩個函數(shù)的圖象:圖1ox0xMy思考1:這兩個函數(shù)圖象有何共同特征?yxox0圖2MAB
2024-11-10 08:36
【總結(jié)】數(shù)列的最值問題及單調(diào)數(shù)列問題求等差數(shù)列前n項和最值的兩種方法(1)函數(shù)法:利用等差數(shù)列前n項和的函數(shù)表達(dá)式,通過配方或借助圖象求二次函數(shù)最值的方法求解.(2)鄰項變號法①時,滿足的項數(shù)m使得取得最大值為;②當(dāng)時,滿足的項數(shù)m使得取得最小值為.例1、在等差數(shù)列{an}中,已知a1=20,前n項和為Sn,且S10=S15,求當(dāng)n取何值時,Sn取得最大值,并求出它
2025-03-25 02:51
【總結(jié)】二次函數(shù)在閉區(qū)間上的最值一、知識要點:設(shè),求在上的最大值與最小值。當(dāng)時,它的圖象是開口向上的拋物線,數(shù)形結(jié)合可得在[m,n]上的最值:,的最小值是的最大值是中的較大者。若,由在上是增函數(shù)則的最小值是,最大值是若,由在上是減函數(shù)則的最大值是,最小值是當(dāng)時,可類比得結(jié)論。二、例題分析歸類:(一)、正向型1
2025-06-23 13:56
【總結(jié)】函數(shù)的單調(diào)性(一)一、選擇題:1.在區(qū)間(0,+∞)上不是增函數(shù)的函數(shù)是 () A.y=2x+1 B.y=3x2+1 C.y= D.y=2x2+x+12.函數(shù)f(x)=4x2-mx+5在區(qū)間[-2,+∞]上是增函數(shù),在區(qū)間(-∞,-2)上是減函數(shù),則f(1)等于 () A.-7 B.1 C.17 D.259.函數(shù)的遞增區(qū)間依次
2025-06-18 20:32
【總結(jié)】第6講三角函數(shù)單調(diào)性及最值[學(xué)習(xí)目標(biāo)]1.掌握y=sinx的最大值與最小值,并會求簡單三角函數(shù)的值域和最值.2.掌握y=sinx的單調(diào)性,并能利用單調(diào)性比較大小.=Asin(ωx+φ)的單調(diào)區(qū)間.[知識鏈接]1.怎樣求函數(shù)f(x)=Asin(ωx+φ)的最小正周期?答 由誘導(dǎo)公式一知:對任意x∈R,都有Asin[(ωx+φ)+2π]=Asin(ωx+φ),
2025-07-23 03:00
【總結(jié)】最新人教版數(shù)學(xué)精品教學(xué)資料函數(shù)的單調(diào)性與最值學(xué)習(xí)目標(biāo):1、理解函數(shù)單調(diào)性的概念,會根據(jù)函數(shù)的圖像判斷函數(shù)的單調(diào)性;2、能夠根據(jù)函數(shù)單調(diào)性的定義證明函數(shù)在某一區(qū)間上的單調(diào)性。學(xué)習(xí)重難點:重點:函數(shù)單調(diào)性的概念和判斷某些函數(shù)單調(diào)性的方法。難點:函數(shù)單調(diào)性的判斷與證明。一.自主梳理y0:觀察函數(shù),的圖象xy0
2025-04-17 02:32
【總結(jié)】 優(yōu)能中學(xué)教育學(xué)習(xí)中心U-CANLearningcentreofmiddlesch
2025-05-31 22:43
【總結(jié)】二次函數(shù)在閉區(qū)間上的最值一、知識要點:一元二次函數(shù)的區(qū)間最值問題,核心是函數(shù)對稱軸與給定區(qū)間的相對位置關(guān)系的討論。一般分為:對稱軸在區(qū)間的左邊,中間,右邊三種情況.設(shè),求在上的最大值與最小值。分析:將配方,得頂點為、對稱軸為當(dāng)時,它的圖象是開口向上的拋物線,數(shù)形結(jié)合可得在[m,n]上的最值:(1)當(dāng)時,的最小值是的最大值是中的較大者。(2)當(dāng)時若,由在上是增函
2025-06-18 20:13
【總結(jié)】函數(shù)的單調(diào)性與導(dǎo)數(shù)???教學(xué)內(nèi)容:人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)》選修1-1P97—101?教學(xué)目標(biāo):(1)知識目標(biāo):能探索并應(yīng)用函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系求單調(diào)區(qū)間,能由導(dǎo)數(shù)信息繪制函數(shù)大致圖象。?(2)能力目標(biāo):培養(yǎng)學(xué)生的觀察能力、歸納能力,增強(qiáng)數(shù)形結(jié)合的思維意識。
2025-05-16 02:09
【總結(jié)】函數(shù)單調(diào)性習(xí)題課:注:①所有的單調(diào)性,必須在定義域內(nèi)來談.②單調(diào)性必須指明區(qū)間。③目前函數(shù)單調(diào)性的證明只能用定義來證明。④函數(shù)單調(diào)性描述的是圖像的變化趨勢。、減函數(shù)的定義:設(shè)函數(shù)f(x)的定義域為I:如果對于定義域I內(nèi)某個區(qū)間上的任意兩個自變量的值x1,x2①當(dāng)x1x2時,都
2024-11-06 20:15
【總結(jié)】[鍵入文字]課題函數(shù)的基本性質(zhì)教學(xué)目標(biāo)理解函數(shù)的單調(diào)性、最大(?。┲导捌鋷缀我饬x;結(jié)合具體函數(shù),了解奇偶性的含義;重點、難點單調(diào)性及奇偶性的應(yīng)用考點及考試要求函數(shù)單調(diào)性、奇偶性的判定及應(yīng)用教學(xué)內(nèi)容一、典型選擇題1.在區(qū)間上為增函數(shù)的是( ?)A.
2025-05-16 01:56
【總結(jié)】(4).對數(shù)函數(shù)的導(dǎo)數(shù):.1)(ln)1(xx??.ln1)(log)2(axxa??(5).指數(shù)函數(shù)的導(dǎo)數(shù):.)()1(xxee??).1,0(ln)()2(????aaaaaxxxxcos)(sin1??)((3).三角函數(shù):
2025-01-18 17:16
【總結(jié)】1.3導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)本節(jié)重點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.本節(jié)難點:用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的步驟.(5)對數(shù)函數(shù)的導(dǎo)數(shù):.1)(ln)1(xx??.ln1)(log)2(axxa??(4)指數(shù)函數(shù)的導(dǎo)數(shù):.)()1(xx
2024-10-19 11:54