【總結】必修一《》說課稿尊敬的各位評委老師,我是來自10級數(shù)學與應用數(shù)學4班的馬燕,今天我說課的內容是方程的根與函數(shù)的零點,我將從以下四個方面進行分析:教材分析,教法與學法分析,教學過程,教學評價。一、【教材分析】1教材的地位和作用《方程的根與函數(shù)的零點》是人教版A版必修1第三章第一節(jié)第一課時的內容,本節(jié)課是屬于基本初等函數(shù)第一部分的知識,在此之前,學生已經學習了指數(shù)函數(shù),對數(shù)
2025-05-02 23:18
【總結】2020年高中數(shù)學函數(shù)的零點學案新人教B版必修1知識與技能:結合二次函數(shù)的圖象,理解函數(shù)的零點概念,領會函數(shù)零點與相應方程根的關系;過程與方法:掌握求函數(shù)零點的方法,并能簡單應用;情感態(tài)度與價值觀:通過學習,體會數(shù)形結合的思想從特殊到一般的思考問題的方法。二、學習重、難點:函數(shù)的零點的概念及求法和性質。
2024-11-19 23:24
【總結】復習回顧:f(x)=0有實數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點?函數(shù)y=f(x)有零點判別式方程ax2+bx+c=0的根函數(shù)y=ax2+bx+c的零點?>0兩不相等實根兩個零點?=0兩相等實根一個零點?<0沒有實根
2024-11-10 22:54
【總結】函數(shù)的零點沈陽二中數(shù)學組思考:一元二次方程ax2+bx+c=0(a≠0)的根與二次函數(shù)y=ax2+bx+c(a≠0)的圖象有什么關系?方程ax2+bx+c=0(a≠0)的根函數(shù)y=ax2+bx+c(a≠0)的圖象判別式△=b2-4ac△>0△=0△<0
2025-08-16 01:48
【總結】方程的根和函數(shù)的零點思考:一元二次方程ax2+bx+c=0(a≠0)的根與二次函數(shù)y=ax2+bx+c(a≠0)的圖象有什么關系?方程x2-2x+1=0x2-2x+3=0y=x2-2x-3y=x2-2x+1函數(shù)函
2025-10-02 16:46
【總結】廣東省深圳市第三高級中學數(shù)學必修一《函數(shù)的零點》課件自學反饋?)0()(22的圖象有何關系的根與二次函數(shù)二次方程???????acbxaxxfcbxaxxy31?xy21?xy21?4?1322???xxy442???xxy542???xxy重點評析(以a&
2024-11-11 06:00
【總結】近年高考試卷中的N型函數(shù)零點個數(shù)問題賞析近些年來,有不少的N型函數(shù)零點個數(shù)問題出現(xiàn)在不同年份、不同省區(qū)與全國的高考試卷中,這不能不成為高考的熱門話題和需要我們研究并指導高三學生進行科學備考的一個重點內容。什么是N型函數(shù)零點個數(shù)問題呢,就是含參函數(shù)在其定義域內連續(xù)可導,有兩個極值點、并將其定義域分成三個單調區(qū)間,通常是“增減增”或“減增減”,在此條件的基礎上,方程或的根的個數(shù)與參數(shù)取值范圍
2025-03-24 12:18
【總結】0)(?xf)(xfy?方程x2-2x+1=0x2-2x+3=0y=x2-2x-3y=x2-2x+1函數(shù)函數(shù)的圖象方程的實數(shù)根x1=-1,x2=3x1=x2=1無實數(shù)根(-1,0)、(3,0)(1,0)無交點x2-2x-
2024-11-24 13:41
【總結】方程的根與函數(shù)的零點方程解法史話:數(shù)學家方臺納的故事1535年,在意大利有一條轟動一時的新聞:數(shù)學家奧羅挑戰(zhàn)數(shù)學家方臺納,奧羅給方臺納出了30道題,求解x3+5x=10,x3+7x=14,x3+11x=20,……;諸如方程x3+Mx=N,M,N是正整數(shù),比賽時間為20天,方臺納埋頭苦干,終于在最后一天解決了這個問題。方程的求解經
2024-11-09 04:14
【總結】與三角函數(shù)有關的零點問題1、【2015湖北】函數(shù)的零點個數(shù)為______.【答案】2【解析】因為=,所以函數(shù)的零點個數(shù)為函數(shù)與圖象的交點的個數(shù),函數(shù)與圖象如圖,由圖知,兩函數(shù)圖象有2個交點,所以函數(shù)有2個零點.【方法技巧歸納】利用函數(shù)圖象處理函數(shù)的零點(方程根)主要有兩種策略:(1)確定函數(shù)零點的個數(shù):利用圖象研究與軸的交點個數(shù)或轉化成兩個函數(shù)圖象的交點個數(shù)定性判斷;(2
2025-03-24 05:48
【總結】1《方程的根與函數(shù)的零點》的教學設計湖北省黃岡市團風中學胡建平教材分析本節(jié)課選自《普通高中課程標準實驗教課書數(shù)學I必修本(A版)》的第三章的根與函數(shù)的的零點。函數(shù)與方程是中學數(shù)學的重要內容,既是初等數(shù)學的基礎,又是出等數(shù)學與高等數(shù)學的連接紐帶。在現(xiàn)實生活實踐中,函數(shù)與方程都有著十分的應用,在注重理論與實踐相結合的今天,
2024-11-21 04:35
【總結】用二分法求方程的近似解1、二分法的概念 對于在區(qū)間[a,b]上連續(xù)不斷且·0的函數(shù), 通過不斷把函數(shù)的零點所在的區(qū)間一分為二, 使區(qū)間的兩個端點逐步逼近零點,進而得到零點的近似值的方法叫二分法。2、用二分法求函數(shù)的零點的近似值的步驟:(1)確定區(qū)間[a,b],驗證:·0,確定精確度(2)求區(qū)間(a,b)的中點(3)計
2025-04-16 12:59
【總結】思考:一元二次方程ax2+bx+c=0(a≠0)的根與二次函數(shù)y=ax2+bx+c(a≠0)的圖象有什么關系?我們知道,令一個一元二次函數(shù)2(0)yaxbxca????的函數(shù)值y=0,則得到一元二次方程20(0)axbxca????問題1觀察下表(一),說出表中一元二次方程的實數(shù)根與相應
2024-11-09 08:08
【總結】哪里有數(shù),哪里就有美代數(shù)是搞清楚世界上數(shù)量關系的智力工具數(shù)學是科學的大門和鑰匙問題1:2x-1=0與y=2x-1它們的含義分別如何?2x-1=0的根與函數(shù)y=2x-1的圖
2025-08-01 14:39
【總結】思考:一元二次方程ax2+bx+c=0(a≠0)的根與二次函數(shù)y=ax2+bx+c(a≠0)的圖象有什么關系?我們知道,令一個一元二次函數(shù)2(0)yaxbxca????的函數(shù)值y=0,則得到一元二次方程20(0)axbxca????問題1觀察下表(一),說出表中一元二次方程的實
2024-11-12 18:12