【總結(jié)】貝葉斯估計(jì)及其在抽樣調(diào)查中的應(yīng)用2(Bayes,Thomas)(1702─1761)貝葉斯是英國(guó)數(shù)學(xué)家.1702年生于倫敦;1761年4月17日卒于坦布里奇韋爾斯.貝葉斯是一位自學(xué)成才的數(shù)學(xué)家.曾助理宗教事務(wù),后來(lái)長(zhǎng)期擔(dān)任坦布里奇韋爾斯地方教堂的牧師.1742年,貝葉斯被選為英
2025-02-27 04:54
【總結(jié)】1第四節(jié)2全概率公式和貝葉斯公式主要用于計(jì)算比較復(fù)雜事件的概率,它們實(shí)質(zhì)上是加法公式和乘法公式的綜合運(yùn)用.綜合運(yùn)用加法公式P(A+B)=P(A)+P(B)A、B互不相容乘法公式P(AB)=P(A)P(B|A)P(A)03設(shè)nAAA,,,21?為一個(gè)
2025-08-04 14:06
【總結(jié)】西南財(cái)經(jīng)大學(xué)天府學(xué)院§全概率公式與貝葉斯公式一、全概率公式二、貝葉斯公式1西南財(cái)經(jīng)大學(xué)天府學(xué)院西南財(cái)經(jīng)大學(xué)天府學(xué)院例1有三個(gè)箱子,分別編號(hào)為1,2,3,1號(hào)箱裝有1個(gè)紅球4個(gè)白球,2號(hào)箱裝有2紅3白球,3號(hào)箱裝有3紅球.某人從三箱中任取一箱,從中任意摸出一球,求取得紅球的概率.解:記Ai={球取自i號(hào)箱},
2025-05-03 18:43
【總結(jié)】正態(tài)模型刻度參數(shù)的經(jīng)驗(yàn)貝葉斯估計(jì)劉榮玄朱少平(井岡山學(xué)院數(shù)理學(xué)院江西吉安343009)摘要:依據(jù)經(jīng)驗(yàn)貝葉斯估計(jì)的思想,研究在平方損失函數(shù)下,正態(tài)模型單參數(shù)的經(jīng)驗(yàn)貝葉斯(EB)估計(jì)問(wèn)題.先將理論貝葉斯估計(jì)用的邊際分布密度函數(shù)及該分布密度函數(shù)的一階導(dǎo)數(shù)表示出來(lái),再利用過(guò)去樣本值和當(dāng)前值,采用密度函數(shù)的核估計(jì)方法構(gòu)造相應(yīng)的函數(shù),代替理論貝葉斯估計(jì)中的函數(shù),得到參數(shù)的經(jīng)
2025-08-04 17:37
【總結(jié)】樸素貝葉斯分類(lèi)、摘要??????貝葉斯分類(lèi)是一類(lèi)分類(lèi)算法的總稱(chēng),這類(lèi)算法均以貝葉斯定理為基礎(chǔ),故統(tǒng)稱(chēng)為貝葉斯分類(lèi)。本文作為分類(lèi)算法的第一篇,將首先介紹分類(lèi)問(wèn)題,對(duì)分類(lèi)問(wèn)題進(jìn)行一個(gè)正式的定義。然后,介紹貝葉斯分類(lèi)算法的基礎(chǔ)——貝葉斯定理。最后,通過(guò)實(shí)例討論貝葉斯分類(lèi)中最簡(jiǎn)單的一種:樸素貝葉斯分類(lèi)。、分類(lèi)問(wèn)題綜述
2025-04-08 23:55
【總結(jié)】課前思考?機(jī)器自動(dòng)識(shí)別分類(lèi),能不能避免錯(cuò)分類(lèi)??怎樣才能減少錯(cuò)誤??不同錯(cuò)誤造成的損失一樣嗎??先驗(yàn)概率,后驗(yàn)概率,概率密度函數(shù)??什么是貝葉斯公式??正態(tài)分布?期望值、方差??正態(tài)分布為什么是最重要的分布之一?學(xué)習(xí)指南?理解本章的關(guān)鍵?要正確理解先驗(yàn)概率,類(lèi)概率密度函數(shù),后驗(yàn)
2025-02-06 05:59
【總結(jié)】第二章貝葉斯決策理論§基于最小錯(cuò)誤率的貝葉斯判別法§基于貝葉斯公式的幾種判別規(guī)則§正態(tài)分布模式的統(tǒng)計(jì)決策§概率密度函數(shù)的估計(jì)§貝葉斯分類(lèi)器的錯(cuò)誤概率1第二章貝葉斯決策理論模式識(shí)別的分類(lèi)問(wèn)題就是根據(jù)待識(shí)客體的特征向量值及其它約束條件
2025-01-10 18:18
【總結(jié)】貝葉斯分析BayeseanAnalysis§一、決策問(wèn)題的表格表示——損失矩陣對(duì)無(wú)觀察(No-data)問(wèn)題a=δ可用表格(損失矩陣)替代決策樹(shù)來(lái)描述決策問(wèn)題的后果(損失):……π()…π()…π()
2025-06-30 04:30
【總結(jié)】北方民族大學(xué)信計(jì)學(xué)院第二章貝葉斯決策理論模式識(shí)別理論及應(yīng)用PatternRecognition-MethodsandApplication內(nèi)容目錄第二章貝葉斯決策理論引言基于判別函數(shù)的分類(lèi)器設(shè)計(jì)基于最小錯(cuò)誤率的Bayes決策基于最小風(fēng)險(xiǎn)的Bayes決策正態(tài)分布的最小錯(cuò)誤率Baye
2024-10-16 21:28
【總結(jié)】§5全概率公式和貝葉斯公式全概率公式和貝葉斯公式SA1A2An…...BA1BA2…...BAn=21nBABABAB???;,,2,1,,,=njijiAAji????.21SAAAn?????定義設(shè)S為試驗(yàn)E的樣本空間,為E的一組事件。若滿(mǎn)足
2024-09-29 19:04
【總結(jié)】聚類(lèi)(Cluster)?聚類(lèi)目的在將相似的事物歸類(lèi)。?聚類(lèi)分析又稱(chēng)為“同質(zhì)分組”或者“無(wú)監(jiān)督的分類(lèi)”,指把一組數(shù)據(jù)分成不同的“簇”,每簇中的數(shù)據(jù)相似而不同簇間的數(shù)據(jù)則距離較遠(yuǎn)。相似性可以由用戶(hù)或者專(zhuān)家定義的距離函數(shù)加以度量。?好的聚類(lèi)方法應(yīng)保證不同類(lèi)間數(shù)據(jù)的相似性盡可能地小,而類(lèi)內(nèi)數(shù)據(jù)的相似性盡可能地大。12022/1/4
2024-12-29 12:15
【總結(jié)】第二章貝葉斯決策理論,,,2.1引言2.2最小錯(cuò)誤率貝葉斯決策2.3最小風(fēng)險(xiǎn)貝葉斯決策2.4正態(tài)分布下的貝葉斯決策,2.1引言,統(tǒng)計(jì)決策理論是根據(jù)每一類(lèi)總體的概率分布決定未知類(lèi)別的樣本屬于哪一類(lèi)貝葉斯...
2024-10-20 20:29
【總結(jié)】模式識(shí)別——貝葉斯決策理論馬勤勇一最簡(jiǎn)單的貝葉斯分類(lèi)算法?還使用前面的例子:鱸魚(yú)(seabass)和鮭魚(yú)(salmon)。?使用一個(gè)特征亮度對(duì)這兩種魚(yú)進(jìn)行表示。?新來(lái)了一條魚(yú)特征是x(亮度),怎么根據(jù)特征x確定它到底是鱸魚(yú)ω1還是鮭魚(yú)ω2??已知數(shù)據(jù):鱸魚(yú)類(lèi)標(biāo)號(hào)ω1,鮭魚(yú)類(lèi)標(biāo)號(hào)ω2。鱸魚(yú)
2025-03-05 16:28
【總結(jié)】貝葉斯空間計(jì)量模型一、采用貝葉斯空間計(jì)量模型的原因殘差項(xiàng)可能存在異方差,而?ML?估計(jì)方法的前提是同方差,因此,當(dāng)殘差項(xiàng)存在異方差時(shí),采用?ML?方法估計(jì)出的參數(shù)結(jié)果不具備穩(wěn)健性。二、貝葉斯空間計(jì)量模型的估計(jì)方法(一)待估參數(shù)對(duì)于空間計(jì)量模型(以空間自回歸模型為例)y
2025-06-24 20:01
【總結(jié)】17/18第四章貝葉斯分析BayeseanAnalysis§一、決策問(wèn)題的表格表示——損失矩陣對(duì)無(wú)觀察(No-data)問(wèn)題a=δ可用表格(損失矩陣)替代決策樹(shù)來(lái)描述決策問(wèn)題的后果(損失):……π()…π()…