freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

混沌動力學ppt課件(編輯修改稿)

2025-05-31 04:59 本頁面
 

【文章內(nèi)容簡介】 境容量,環(huán)境能夠供養(yǎng)的最大昆蟲數(shù)目。 的飽和值 X*。 : t時刻的昆蟲數(shù) 其等于 Logistic映射 如果我們將環(huán)境容量取為 1個單位,也即意味著如果 L=100萬,那么昆蟲數(shù)目 應(yīng)以 100萬為單位。 上式變?yōu)椋? 此式的精確解為: X( 0)是 昆蟲繁衍的長期行為:當 飽和值 時的昆蟲數(shù)。 t x 如果我們每年對昆蟲數(shù)目測算一次,并用 年的昆蟲數(shù),則原來的連續(xù)變量 和 t就變?yōu)殡x散變量 則: Verhulst生成模型就演化為: 表示第 n Logistic映射(離散模型) f 函數(shù)的這種作用在數(shù)學上稱為 映射 。 求解差分方程可采用逐步迭代法運算: 即: 是從初始 開始連續(xù) n次用 f函數(shù)作用的結(jié)果。 Logistic 仍然映射到該區(qū)間, ,這種映射稱為自身映射。 自身映射 :如果控制參數(shù) K值在 0和 4之間, 的作用是把任何值 函數(shù) f 即 Logistic映射 從倍周期分叉通向混沌 (一 ) 0K1 (K0=1) 解不動點? 每個不動點: 當 K=: 因此,當 K=,昆蟲演化的最終結(jié)果是趨于穩(wěn)定 ,即消亡。 不動點 不動點: 穩(wěn)定點、收斂點 那么,作為生態(tài)學研究的課題, K究竟要達到何值才能使之擺脫消亡(滅亡)的不幸結(jié)局呢? 可采用分析不動點的穩(wěn)定性條件來回答這個問題。 在穩(wěn)定的不動點 附近,如果把每次迭代結(jié)果寫成: 那么,要使 逐漸趨于穩(wěn)定不動點 ,則隨著迭代 逐漸減小,即 的進行, 上式就是不動點 的穩(wěn)定條件。 由 在不動點處, 那么 的穩(wěn)定性條件為: 將 代入上式,得到不動點 也就是說,要使昆蟲的數(shù)目隨時間延續(xù)不致于消亡, 所以,不動點 的穩(wěn)定條件為: 我們來看 x的另一個不動點 那么 K=? 也即:當參數(shù)從 K1變?yōu)?K1時不動點 把穩(wěn)定性 了。 交給 (二 ) 1K3 (K1=3) 從上圖可以看出: ① 隨著 K值的增大,曲線斜率在逐漸變陡,而只有那些 曲線斜率小于 1 的不動點才為穩(wěn)定不動點。 ② 當昆蟲的繁殖能力 K達到一定程度時,無論初始 怎樣小(昆蟲數(shù)量各多少)(但 它都會逐年增加,最后把昆蟲數(shù)目穩(wěn)定在 趨勢不會永遠繼續(xù)下去,當 K超過 3時 也會變成不 生存資源條件允許的有限數(shù)目上。但我們看到,這個 一個 有限數(shù)目 也會隨著 K的增加而增加,但這種 穩(wěn)定。 (三 ) 3K (K2= =) 既然是重復出現(xiàn): 系統(tǒng)重復出現(xiàn)的這兩個點 上述情況 表明:當 K3時,昆蟲數(shù)的長時間行為不再趨于某一固定值,而是趨于一年多一年少的 周期值(交替)。 稱為 2點周期 。 如此眾多的昆蟲,絕大多數(shù)昆蟲未能到產(chǎn)卵期使中途死亡,幸存的昆蟲留下少量的卵在第三年又蜉化出 則少量的 昆蟲有足夠的食物和良好的環(huán)境空間,絕大多數(shù)昆蟲都能活到夏末的產(chǎn)卵期,留下大量的卵可供第二年春季蜉化出眾多的昆蟲數(shù) 線性項(加快繁殖);非線性項(限制繁殖) 這種 交替變化 來源于線性項 和非線性項 之間的 競爭 。 ① 如果某一年的昆蟲數(shù)處于較少的 。 狀態(tài),
點擊復制文檔內(nèi)容
教學課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1