【總結】專題五第二講橢圓、雙曲線、拋物線一、選擇題1.(2011·安徽高考)雙曲線2x2-y2=8的實軸長是( )A.2 B.2C.4 D.4解析:雙曲線方程可變?yōu)椋?,所以a2=4,a=2,2a=4.答案:C2.過橢圓+=1(a>b>0)的左焦點F1作x軸的垂線交橢圓于點P,F(xiàn)2為右焦點,若∠F1PF2=60°
2025-01-14 18:39
【總結】宜豐中學數(shù)學組況正芳高中數(shù)學第二冊(上)高中數(shù)學第八章圓錐曲線課件2020年12月16日書山有路勤為徑,學海無崖苦作舟少小不學習,老來徒傷悲成功=艱苦的勞動+正確的方法+少談空話天
2024-11-09 13:24
【總結】佛山學習前線教育培訓中心拋物線的定義及性質一、拋物線的定義及標準方程拋物線的定義:平面內與一個定點和一條定直線的距離相等的點的軌跡叫做拋物線。定點叫做拋物線的焦點,定直線叫做拋物線的準線。標準方程()()()()圖形焦點
2025-06-24 21:19
【總結】制作人大同縣一中賀森一、復習橢圓、雙曲線的第二定義是什么?當點M與一個定點的距離和它到一條定直線的距離比是常數(shù)e時),10(???eace這個點的軌跡是橢圓。),1(??eace這個點的軌跡是雙曲線。定義:平面內與一個定點F和一條定直線l的距離相等的點
2025-08-01 17:39
【總結】拋物線及其標準方程蔣風軍泗水一中2021年11月6日人教A版高中數(shù)學選修2-1思考MHFElm如圖,點F是定點,是不經(jīng)過點F的定直線。H是上任意一點,經(jīng)過點H作,線段FH的垂直平分線m交MH于點M。拖動點H,觀察點M的軌跡。你能發(fā)現(xiàn)
2025-05-09 00:38
【總結】兩定點F1、F2(|F1F2|=2c)和的距離的等于常數(shù)2a(2a|F1F2|=2c0)的點的軌跡.平面內與1.橢圓的定義2.雙曲線的定義平面內與兩定點F1、F2(|F1F2|=2c)的距離的差的絕對值等于常數(shù)2a(2a|F1F2|=2c0)?的點軌跡
2024-11-24 16:52
【總結】拋物線定義及其標準方程高二數(shù)學第回顧:橢圓、雙曲線的第二定義?到一個定點的距離和它到一條定直線的距離的比是常數(shù)e的點的軌跡:·PFl0<e<1lF·Pe>1(2)當e>1時,是雙曲線;(3)當e=1時,它的軌跡是什么?(1)當0
2024-11-10 03:21
【總結】拋物線焦點弦經(jīng)典性質通過焦點的直線,與拋物線相交于兩點,連接這兩點的線段叫做拋物線的焦點弦。xOyFA焦點弦),(11yxB),(22yx過拋物線pxy22?(p0)的焦點F作一條直線L和此拋物線相交于A),(11yx、B),(22yx兩點
2025-08-05 07:24
【總結】第四節(jié)拋物線1.拋物線的定義:平面內到____________________________________________________________叫做拋物線,定點F叫做拋物線的________,定直線l叫做拋物線的________.基礎梳理焦點一個定點F和一條定直線l(定點F不在l上)的距離相等的點的軌跡
2024-11-12 18:19
【總結】雙曲線的第二定義:.)1(圓,則這個點的軌跡是橢是常數(shù)的距離的比線的距離和它到一條定直與一個定點動點??eacelFM橢圓的第二定義:.)10(圓,則這個點的軌跡是橢是常數(shù)的距離的比線的距離和它到一條定直與一個定點動點???eacelFMl.FMd.,則軌跡是什么?思考:若1?e拋物線
2024-11-10 03:09
【總結】拋物線定義及其標準方程當即()時,M的軌跡是.復習:橢圓、雙曲線的第二定義:·MFl0<e<1l
2024-10-19 19:07
【總結】孟津第二縣直中學九年級數(shù)學組跟你的學習同伴談談?你對二次函數(shù)圖像和性質的了解?求拋物線解析式的方法?三角形的面積公式(1)求此拋物線的解析式;如圖,拋物線y=x2+bx+c經(jīng)過點A(3,0)、B(0,-3),此拋物線與x軸的另一個交點為C,拋物線的頂點為D.(3,0)(0,-3
2025-08-05 06:12
【總結】拋物線的簡單幾何性質一、拋物線的范圍:y2=2px?y取全體實數(shù)取全體實數(shù)XY?X?0二、拋物線的對稱性y2=2px關于關于X軸對稱軸對稱沒有對稱中心沒有對稱中心XY定義定義:拋物線:拋物線與對稱軸的交點與對稱軸的交點,叫做拋物線的,叫做拋物線的頂點頂點只有一個頂點只有一個頂點X
2025-07-19 02:45
【總結】圓錐曲線與方程拋物線直線與拋物線的關系1.了解拋物線的簡單應用.2.理解數(shù)形結合的思想.3.會處理簡單的直線與拋物線關系問題.基礎梳理1.直線y=x與拋物線y=x2-2的交點個數(shù)為()A.0個B.1個C.2個D.3個2.直線y=x與拋物線y=x2-2的
2024-11-10 21:43
【總結】經(jīng)過拋物線焦點的直線新登中學楊思考題:M是拋物線y2=2px(P>0)上一點,若點M的橫坐標為X0,則點M到焦點的距離是————————————X0+—2pOyx.F
2024-11-09 12:20