【總結(jié)】1.任意角的三角函數(shù)的定義:設(shè)是任意一個角,P是的終邊上的任意一點(異于原點),它與原點的距離是,那么,三角函數(shù)值只與角的大小有關(guān),而與終邊上點P的位置無關(guān)。:(一全二正弦,三切四余弦)+?。 。 。 。 。 。 。 。 。 。?.同
2025-06-22 22:24
【總結(jié)】......1.任意角的三角函數(shù)的定義:設(shè)是任意一個角,P是的終邊上的任意一點(異于原點),它與原點的距離是,那么,三角函數(shù)值只與角的大小有關(guān),而與終邊上點P的位置無關(guān)。:(一全二正弦,三切四余弦)+
2025-06-22 22:17
【總結(jié)】......三角函數(shù)知識點2、角的頂點與原點重合,角的始邊與軸的非負(fù)半軸重合,終邊落在第幾象限,則稱為第幾象限角.第一象限角的集合為第二象限角的集合為第三象限角的集合為第四象限角的集合為終邊在軸上
2025-06-23 03:58
【總結(jié)】....相似三角形知識點及典型例題知識點歸納:1、三角形相似的判定方法(1)定義法:對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形相似。(2)平行法:平行于三角形一邊的直線和其它兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似。(3)判定定理1:如果一個三角形的兩個角
2025-06-23 18:33
【總結(jié)】弘星教育初中數(shù)學(xué)八年級數(shù)學(xué)上冊第十一章三角形一、知識框架二、知識點、概念總結(jié):由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。:在三角形中,連
2025-04-04 03:41
【總結(jié)】初三數(shù)學(xué)《相似三角形》知識提綱(孟老師歸納)一:比例的性質(zhì)及平行線分線段成比例定理(一)相關(guān)概念::兩條線段的比就是兩條線段長度的比在同一長度單位下兩條線段a,b的長度分別為m,n,那么就說這兩條線段的比是,或?qū)懗蒩:b=m:n;其中a叫做比的前項,b叫做比的后項2:比例尺=圖上距離/實際距離3:成比例線段:在四條線段a,b,c,d中,如果其中兩條線段的比等于
2025-04-04 03:44
【總結(jié)】三角形1、三角形的定義:由三條線段圍成的圖形(每相鄰兩條線段的端點相連或重合),叫三角形。2、從三角形的一個頂點到它的對邊做一條垂線,頂點和垂足間的線段叫做三角形的高,這條對邊叫做三角形的底。三角形只有3條高。重點:三角形高的畫法。3、三角形的特性:1、物理特性:穩(wěn)定性。如:自行車的三角架,電線桿上的三角架。4、邊的特性:任意兩邊之和大于第三邊。5、為了表達(dá)方便,
2024-08-02 23:24
【總結(jié)】 全等三角形只是總結(jié)及經(jīng)典例題[知識要點]一、全等三角形1.判定和性質(zhì)一般三角形直角三角形判定邊角邊(SAS)、角邊角(ASA)角角邊(AAS)、邊邊邊(SSS)具備一般三角形的判定方法斜邊和一條直角邊對應(yīng)相等(HL)性質(zhì)對應(yīng)邊相等,對應(yīng)角相等對應(yīng)中線相等,對應(yīng)高相等,對應(yīng)角平分線相等注:①判定兩個三角形全等
2025-04-16 22:13
【總結(jié)】高中數(shù)學(xué)必修五第一章解三角形知識點歸納1、三角形三角關(guān)系:A+B+C=180°;C=180°—(A+B);2、三角形三邊關(guān)系:a+bc;a-bc3、三角形中的基本關(guān)系:4、正弦定理:在中,、、分別為角、、的對邊,為的外接圓的半徑,則有.5、正弦定理的變形公式:①化角為邊:,,;②化邊為角:,,;③;④.
2025-06-18 19:06
【總結(jié)】三角形、全等三角形、軸對稱三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂
2024-08-02 01:22
【總結(jié)】第一篇:全等三角形知識點總結(jié)及復(fù)習(xí) 全等三角形知識點總結(jié)及復(fù)習(xí)一、知識網(wǎng)絡(luò)二、基礎(chǔ)知識梳理(一)、基本概念1、“全等”的理解全等的圖形必須滿足:(1)形狀相同的圖形; (2)大小相等的圖形; 即...
2024-10-23 08:11
【總結(jié)】第七章三角形【知識要點】一.認(rèn)識三角形1.關(guān)于三角形的概念及其按角的分類定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。2.三角形的分類:①三角形按內(nèi)角的大小分為三類:銳角三角形、直角三角形、鈍角三角形。②三角形按邊分為兩類:等腰三角形和不等邊三角形。2.關(guān)于三角形三條邊的關(guān)系(判斷三條線段能否構(gòu)成三角形的方法、比較線段的長短)根據(jù)公理
【總結(jié)】必修5第一章解三角形1.正弦定理::在一個三角形中,各邊和它所對角的正弦的比相等,并且都等于外接圓的直徑,即(其中R是三角形外接圓的半徑):1).2)化邊為角:;3)化邊為角:4)化角為邊:5)化角為邊:3.利用正弦定理可以
2025-06-19 16:34
【總結(jié)】解三角形的必備知識和典型例題一、知識必備:1.直角三角形中各元素間的關(guān)系:在△ABC中,C=90°,AB=c,AC=b,BC=a。(1)三邊之間的關(guān)系:a2+b2=c2。(勾股定理)(2)銳角之間的關(guān)系:A+B=90°;(3)邊角之間的關(guān)系:(銳角三角函數(shù)定義):sinA=cosB=,cosA=sinB=,tanA=。2.斜三角形中各元素間的關(guān)
2025-06-18 18:54
【總結(jié)】三角形幾何A級概念:(要求深刻理解、熟練運(yùn)用、主要用于幾何證明)1.三角形的角平分線定義:三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線.(如圖)幾何表達(dá)式舉例:(1)∵AD平分∠BAC∴∠BAD=∠CAD(2)∵∠BAD=∠CAD∴AD是角平分線2.三角形的中線定義:在三角形中,連結(jié)一個頂點和它的對邊的
2025-04-04 03:15