【總結(jié)】一、知識點復(fù)習(xí)1、正弦定理及其變形2、正弦定理適用情況:(1)已知兩角及任一邊(2)已知兩邊和一邊的對角(需要判斷三角形解的情況)已知a,b和A,求B時的解的情況:如果sinA≥sinB,則B有唯一解;如果sinAsinB1,則B有兩解;如果sinB=1,則B有唯一解;如果sinB1,則B無解.3、余弦定理及其推論
2025-05-31 23:31
【總結(jié)】......全等三角形知識梳理一、知識網(wǎng)絡(luò)二、基礎(chǔ)知識梳理(一)、基本概念1、“全等”的理解全等的圖形必須滿足:(1)形狀相同的圖形;(2)大小相等的圖形;即能夠完全重合的兩個圖形叫全等形。同樣
2025-04-04 03:51
【總結(jié)】全等三角形知識梳理一、知識網(wǎng)絡(luò)二、基礎(chǔ)知識梳理(一)、基本概念1、“全等”的理解全等的圖形必須滿足:(1)形狀相同的圖形;(2)大小相等的圖形;即能夠完全重合的兩個圖形叫全等形。當(dāng)兩個三角形完全重合時,互相重合的頂點叫做對應(yīng)頂點,互相重合的邊叫做對應(yīng)邊,互相重合的角叫做對應(yīng)角。注:(1)全等三角形對應(yīng)角所對的邊是對應(yīng)邊,兩個對應(yīng)角所夾的邊是
2025-06-19 22:58
【總結(jié)】......全等三角形專題講解(一)知識儲備1、全等三角形的概念:(1)能夠重合的兩個圖形叫做全等形。(2)兩個三角形是全等形,就說它們是全等三角形
2025-06-19 23:06
【總結(jié)】三角形、全等三角形、軸對稱三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂
2025-07-24 01:22
【總結(jié)】第七章三角形【知識要點】一.認(rèn)識三角形1.關(guān)于三角形的概念及其按角的分類定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。2.三角形的分類:①三角形按內(nèi)角的大小分為三類:銳角三角形、直角三角形、鈍角三角形。②三角形按邊分為兩類:等腰三角形和不等邊三角形。2.關(guān)于三角形三條邊的關(guān)系(判斷三條線段能否構(gòu)成三角形的方法、比較線段的長短)根據(jù)公理
2025-06-23 03:58
【總結(jié)】解三角形的必備知識和典型例題一、知識必備:1.直角三角形中各元素間的關(guān)系:在△ABC中,C=90°,AB=c,AC=b,BC=a。(1)三邊之間的關(guān)系:a2+b2=c2。(勾股定理)(2)銳角之間的關(guān)系:A+B=90°;(3)邊角之間的關(guān)系:(銳角三角函數(shù)定義):sinA=cosB=,cosA=sinB=,tanA=。2.斜三角形中各元素間的關(guān)
2025-06-18 18:54
【總結(jié)】《全等三角形》概念一、結(jié)構(gòu)梳理全等圖形應(yīng)用特征豐富的生活情境全等三角形特征全等三角形特例全等三角形條件畫三角形二、知識梳理(一)概念梳理1.全等圖形定義:兩個能夠完全重合的圖形稱為全等圖形,全等圖形的形狀和大小都相同.例如圖1中的兩個圖形形狀相同,但大小不同,不能重合在一起,因此不是全等圖形,
2025-04-04 03:45
【總結(jié)】......相似三角形知識點總結(jié)知識點1有關(guān)相似形的概念(1)形狀相同的圖形叫相似圖形,在相似多邊形中,最簡單的是相似三角形.(2)如果兩個邊數(shù)相同的多邊形的對應(yīng)角相等,對應(yīng)邊成比例,這兩個多邊形叫做相似多
2025-06-25 00:16
【總結(jié)】【三角形】1、三角形的定義:由三條線段圍成的圖形(每相鄰兩條線段的端點相連或重合),叫三角形。2、從三角形的一個頂點到它的對邊做一條垂線,頂點和垂足間的線段叫做三角形的高,這條對邊叫做三角形的底。三角形只有3條高。重點:三角形高的畫法。3、三角形的特性:1、物理特性:穩(wěn)定性。如:自行車的三角架,電線桿上的三角架。4、邊的特性:任意兩邊之和大于第三邊。5、為了表達(dá)方
2025-07-24 01:52
【總結(jié)】全等三角形復(fù)習(xí)1、全等三角形能夠完全重合的兩個三角形叫做全等三角形。一個三角形經(jīng)過平移、翻折、旋轉(zhuǎn)可以得到它的全等形。2、全等三角形性質(zhì):(1):全等三角形的對應(yīng)邊相等、對應(yīng)角相等。(2):全等三角形的周長相等、面積相等。(3):全等三角形的對應(yīng)邊上的對應(yīng)中線、角平分線、高線分別相等。3、全等三角形的判定:邊邊邊:三邊對應(yīng)相等的兩個三角形全等(“SSS”)
2025-06-07 15:45
【總結(jié)】解直角三角形銳角三角函數(shù)1銳角三角函數(shù)的定義⑴、正弦;⑵、余弦;⑶、正切。2、30°、45°、60°特殊角的三角函數(shù)值。3、各銳角三角函數(shù)間關(guān)系⑴、定義;⑵、直角三角形的依據(jù)⑶、解直角三角形的應(yīng)用。①、三邊間關(guān)系;②、銳角間關(guān)系;③、邊角間關(guān)系。本章知識結(jié)構(gòu)梳理
2025-06-18 20:19
【總結(jié)】全等三角形作輔助線經(jīng)典例題常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點
2025-03-24 07:38
【總結(jié)】全等三角形知識點歸納與復(fù)習(xí)(一)1.的兩個三角形全等;2.全等三角形的對應(yīng)邊_;對應(yīng)角;對應(yīng)邊上的高;對應(yīng)角的平分線;對應(yīng)邊的中線;對應(yīng)周長,對應(yīng)面積.3.證明全等三角形的方法(1)三邊
2025-04-16 22:11
【總結(jié)】1.任意角的三角函數(shù)的定義:設(shè)是任意一個角,P是的終邊上的任意一點(異于原點),它與原點的距離是,那么,三角函數(shù)值只與角的大小有關(guān),而與終邊上點P的位置無關(guān)。:(一全二正弦,三切四余弦)+?。 。 。 。 。 。 。 。 。 。?.同
2025-06-22 22:24