【總結(jié)】§函數(shù)的概念學(xué)習(xí)目標(biāo)1、正確理解函數(shù)的概念,能用集合與對(duì)應(yīng)的語(yǔ)言刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用。2、通過實(shí)例領(lǐng)悟構(gòu)成函數(shù)的三個(gè)要素;會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域。3、通過從實(shí)際問題中抽象概括函數(shù)概念的活動(dòng),培養(yǎng)學(xué)生的抽象概括能力。設(shè)在一個(gè)變化過程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值
2024-11-17 18:32
【總結(jié)】§多元函數(shù)的偏導(dǎo)數(shù)與全微分(一)主要內(nèi)容?偏導(dǎo)數(shù)的概念及計(jì)算方法?高階導(dǎo)數(shù)定義8.3設(shè)函數(shù)),(yxfz?在點(diǎn)),(00yx的某一鄰域內(nèi)有定義,當(dāng)y固定在0y而x在0x處有增量x?時(shí),相應(yīng)地函數(shù)有增量),(
2025-04-28 23:20
【總結(jié)】一、函數(shù)的定義域函數(shù)的定義域通常是由問題的實(shí)際背景確定的,如前面所述的三個(gè)實(shí)例。如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,那么函數(shù)的定義域就是指能使這個(gè)式子有意義的實(shí)數(shù)的集合。.)1(),(0)3()32(),3()2()1(,213)(的值時(shí),求當(dāng)?shù)闹登笄蠛瘮?shù)的定義域已知函數(shù)例???
2024-11-24 22:57
【總結(jié)】函數(shù)的概念設(shè)在一個(gè)變化過程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),則稱x是自變量,y是x的函數(shù);其中自變量x的取值的集合叫做函數(shù)的定義域,和自變量x值對(duì)應(yīng)的y的值叫做函數(shù)的值域。初中學(xué)習(xí)的函數(shù)的概念是什么?思考?下面先看幾個(gè)實(shí)例:(1)一枚炮彈發(fā)射后,經(jīng)過2
【總結(jié)】§利用導(dǎo)數(shù)研究函數(shù)2022/11/17一、單調(diào)性則可導(dǎo)在,),(],,[babaCf?).,(),0(0)()(],[baxxfbaf?????減上遞增在證明:)(必要性?,?f?,0)()(:???hxfhxf總有).,(,0)(baxxf????,),(),,(hbahxba
2025-05-06 12:03
【總結(jié)】§函數(shù)的概念學(xué)習(xí)目標(biāo):1、了解函數(shù)的定義,理解函數(shù)的三要素;2、了解函數(shù)的定義域,值域,會(huì)求一些簡(jiǎn)單的函數(shù)的定義域和值域。x分別取1,2時(shí),函數(shù)y=x2-2x+3的值為多少?一、新課導(dǎo)入對(duì)于數(shù)集A中的每個(gè)元素,按照某種對(duì)應(yīng)關(guān)系f,在數(shù)集B中都能找到唯一的元素與之對(duì)應(yīng),記作
2024-11-21 04:24
【總結(jié)】一、復(fù)習(xí)目標(biāo)了解導(dǎo)數(shù)概念的某些實(shí)際背景(瞬時(shí)速度,加速度,光滑曲線切線的斜率等),掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)數(shù)的概念,熟記常見函數(shù)的導(dǎo)數(shù)公式c,xm(m為有理數(shù)),sinx,cosx,ex,ax,lnx,logax的導(dǎo)數(shù),并能熟練應(yīng)用它們求有關(guān)導(dǎo)數(shù).二、重點(diǎn)解析
2024-08-14 05:46
【總結(jié)】()基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運(yùn)算法則基本初等函數(shù)的導(dǎo)數(shù)公式1.2.()3.4.5.ln6.7.8.nRa?'n'n-1''x'xx'x'a'若f(x)=c,則f(
2024-11-21 01:21
2024-11-11 02:10
【總結(jié)】二、高階導(dǎo)數(shù)的運(yùn)算法則第三節(jié)一、高階導(dǎo)數(shù)的概念機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束高階導(dǎo)數(shù)與隱函數(shù)的導(dǎo)數(shù)第二章三、隱函數(shù)求導(dǎo)一、高階導(dǎo)數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運(yùn)動(dòng)機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回
2025-05-12 21:33
【總結(jié)】一、復(fù)習(xí)幾何意義:曲線在某點(diǎn)處的切線的斜率;(瞬時(shí)速度或瞬時(shí)加速度)物理意義:物體在某一時(shí)刻的瞬時(shí)度。2、由定義求導(dǎo)數(shù)(三步法)步驟:);()()1(xfxxfy?????求增量;)()()2(xxfxxfxy???????算比值)(,0)3(xfxyx????
2024-11-17 15:21
【總結(jié)】復(fù)合函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí)與引入:1.函數(shù)的導(dǎo)數(shù)的定義與幾何意義...y=(3x-2)2的導(dǎo)數(shù),那么我們可以把平方式展開,利用導(dǎo)數(shù)的四則運(yùn)算法則求導(dǎo).然后能否用其它的辦法求導(dǎo)呢?又如我們知道函數(shù)y=1/x2的導(dǎo)數(shù)是=-2/x3,那么函數(shù)y=1/(3x-2)2的導(dǎo)數(shù)又是什么呢?為了解決上面
2024-11-06 19:05
【總結(jié)】函數(shù)的單調(diào)性與導(dǎo)數(shù)為常數(shù))????(x)x)(2(1'??1)a0,lna(aa)a)(3(x'x???且1)a,0a(xlna1)xlog)(4('a???且sinx(8)(cosx)'??e)e)(5(x'x?x1(6)(l
2024-11-17 15:36
【總結(jié)】第三章導(dǎo)數(shù)及其應(yīng)用人教A版數(shù)學(xué)第三章導(dǎo)數(shù)及其應(yīng)用人教A版數(shù)學(xué)第三章導(dǎo)數(shù)及其應(yīng)用人教A版數(shù)學(xué)1.知識(shí)與技能結(jié)合函數(shù)的圖象,了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件.2.過程與方法會(huì)用導(dǎo)數(shù)求不超過三次的多項(xiàng)
2024-10-19 11:51
【總結(jié)】第六節(jié)高階導(dǎo)數(shù)一、問題的提出二、主要定理三、典型例題四、小結(jié)與思考2一、問題的提出問題:(1)解析函數(shù)是否有高階導(dǎo)數(shù)?(2)若有高階導(dǎo)數(shù),其定義和求法是否與實(shí)變函數(shù)相同?回答:(1)解析函數(shù)有各高階導(dǎo)數(shù).(2)高階導(dǎo)數(shù)的值可以用函數(shù)在邊界上的值通過積分來表示,這與實(shí)變函
2025-01-20 03:38