【總結(jié)】等差數(shù)列性質(zhì)總結(jié):(d為常數(shù))();2.等差數(shù)列通項公式:,首項:,公差:d,末項:推廣:.從而;3.等差中項(1)如果,,成等差數(shù)列,那么叫做與的等差中項.即:或(2)等差中項:數(shù)列是等差數(shù)列4.等差數(shù)列的前n項和公式:(其中A、B是常數(shù),所以當(dāng)d≠0時,Sn是關(guān)于n的二次式且常數(shù)項為0)特別地,當(dāng)項數(shù)
2025-06-30 04:17
【總結(jié)】2020屆高考數(shù)學(xué)二輪復(fù)習(xí)系列課件15《等差數(shù)列、等比數(shù)列》)(1nfmaann???考試背景遞推列:)(1nfmaann???在06-08年的高考中,歷年都有涉及,如(不完全統(tǒng)計):06年:全國理Ⅰ,福建;07年:全國理Ⅰ,理Ⅱ;08年:全國理Ⅱ.一、基礎(chǔ)知識3.
2024-11-11 02:52
【總結(jié)】第一篇:等差數(shù)列、等比數(shù)列知識點梳理 等差數(shù)列和等比數(shù)列知識點梳理 第一節(jié):等差數(shù)列的公式和相關(guān)性質(zhì) 1、等差數(shù)列的定義:對于一個數(shù)列,如果它的后一項減去前一項的差為一個定值,則稱這個數(shù)列為等差...
2024-11-09 22:38
【總結(jié)】等差數(shù)列和等比數(shù)列的復(fù)習(xí)一、知識要點1.等差數(shù)列和等比數(shù)列是兩種最基本,最常見的數(shù)列.應(yīng)熟練掌握等差、等比數(shù)列的定義、通項公式、前n項和公式,通過通項公式與前n項和公式聯(lián)系著五個基本量a1,d(或q),n,an,Sn,“已知其三必可求其余二”,將等差、等比數(shù)列問題,轉(zhuǎn)化為關(guān)于這五個基本量的運算問題,是常見的解題方法.2.等差、等比數(shù)列具有很多特殊性質(zhì),在運算時,除轉(zhuǎn)化為基本量
2025-06-07 21:08
【總結(jié)】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第4課時等差、等比數(shù)列的應(yīng)用要點·疑點·考點按復(fù)利計算利息的一種儲蓄,本金為a元,每期利率為r,存期為x
2025-01-07 11:51
【總結(jié)】§等差數(shù)列一.課程目標;;,并能用等差數(shù)列的有關(guān)知識解決相應(yīng)的問題;.二.知識梳理如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示.數(shù)學(xué)語言表達式:an+1-an=d(n∈N*,d為常數(shù)),或an-an-1=d(n≥2,d為常數(shù)).2.
2025-03-25 06:56
【總結(jié)】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第3課時等差、等比數(shù)列的運用要點·疑點·考點n項和的最值設(shè)Sn是{an}的前n項和,則{an}為等差數(shù)列
2024-08-03 15:39
【總結(jié)】等差數(shù)列和等比數(shù)列的應(yīng)用復(fù)習(xí)一、課堂練習(xí):?????????8276543aaaaaaaan則,中,若等差數(shù)列.,則,,,,五項分別為:在等比數(shù)列中,有連續(xù)12cbab=a=c=ac=;?
2024-11-09 01:17
【總結(jié)】一、等差等比數(shù)列基礎(chǔ)知識點(一)知識歸納:1.概念與公式:①等差數(shù)列:1°.定義:若數(shù)列稱等差數(shù)列;2°.通項公式:3°.前n項和公式:公式:②等比數(shù)列:1°.定義若數(shù)列(常數(shù)),則稱等比數(shù)列;2°.通項公式:3°.前n項和公式:當(dāng)q=1時2.簡單性質(zhì):①首尾項性質(zhì):設(shè)數(shù)列1°.若是等差
2025-06-25 02:06
【總結(jié)】山西省朔州市應(yīng)縣四中高二數(shù)學(xué)學(xué)案(十一)等差數(shù)列與等比數(shù)列編寫人:朱強基考綱要求1理解數(shù)列的有關(guān)概念,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項。2掌握等差數(shù)列與等比數(shù)列的概念、通項公式、前n項和的公式,并能夠運用這些知識解決一些問題。重點、難點歸納1數(shù)列的有關(guān)概念數(shù)列:按照一定的次序排列的一列數(shù)。通項公式:數(shù)列的第n項an與n之
2025-04-17 08:11
【總結(jié)】等差數(shù)列、等比數(shù)列測試題班級_________姓名__________學(xué)號___________一、選擇題1.一個等差數(shù)列的第一項是32,若這個數(shù)列從15項開始小于1,那么這個數(shù)列的公差d的取值范圍是()A.d1431B.d
2024-11-12 03:39
【總結(jié)】等差數(shù)列與等比數(shù)列總結(jié)一、等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差常用小寫字母d表示;等差中項,如果,那么A叫做a與b的等差中項;如果三個數(shù)成等差數(shù)列,那么等差中項等于另兩項的算術(shù)平均數(shù);等差數(shù)列的通項公式:;等差數(shù)列的遞推公式:;等差數(shù)列的前n項和公式:===
2025-06-29 15:47
【總結(jié)】等比數(shù)列練習(xí)題①在等差數(shù)列中,若,則.②已知數(shù)列中,,又數(shù)列{}是等差數(shù)列,則1.等比數(shù)列中,已知(Ⅰ)求的通項公式(Ⅰ)若分別為等差數(shù)列的第3項和第5項,試求數(shù)列的通項公式及前項和.:,,.(Ⅰ)求的通項公式及前項和(Ⅰ)已知是等差數(shù)列,為前項和,且,,求.3.等比數(shù)列的公比為,作數(shù)列使,求證數(shù)列也是等
2025-01-15 10:21
【總結(jié)】范文范例參考等差數(shù)列、等比數(shù)列1.(2014·山東青島二模)數(shù)列{an}為等差數(shù)列,a1,a2,a3成等比數(shù)列,a5=1,則a10=________2.(2014·河北邯鄲二模)在等差數(shù)列{an}中,3(a3+a5)+2(a7+a10+a13)=24,則該數(shù)列前13項的和是________3.(2014·河北唐山一模)已知等比數(shù)
2025-06-25 03:50