【總結(jié)】2020屆高考數(shù)學(xué)二輪復(fù)習(xí)系列課件15《等差數(shù)列、等比數(shù)列》)(1nfmaann???考試背景遞推列:)(1nfmaann???在06-08年的高考中,歷年都有涉及,如(不完全統(tǒng)計(jì)):06年:全國(guó)理Ⅰ,福建;07年:全國(guó)理Ⅰ,理Ⅱ;08年:全國(guó)理Ⅱ.一、基礎(chǔ)知識(shí)3.
2024-11-11 02:52
【總結(jié)】重慶市萬(wàn)州高級(jí)中學(xué)曾國(guó)榮2020年12月16日星期三重慶市萬(wàn)州高級(jí)中學(xué)曾國(guó)榮§高2020級(jí)數(shù)學(xué)復(fù)習(xí)課件等比數(shù)列定義:一般的,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的比都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等比數(shù)列.
2024-11-09 12:24
【總結(jié)】等差數(shù)列與等比數(shù)列的應(yīng)用復(fù)習(xí)提問(wèn)1、口答:(1)等差數(shù)列的通項(xiàng)公式______?na前n項(xiàng)和公式_____?nS或_____?nS(2)等比數(shù)列的通項(xiàng)公式______?na前n項(xiàng)和公式:當(dāng)1?q時(shí),_____?nS或_____?nS數(shù)列等差
2025-05-12 17:18
【總結(jié)】第1講 等差數(shù)列、等比數(shù)列【自主學(xué)習(xí)】第1講 等差數(shù)列、等比數(shù)列(本講對(duì)應(yīng)學(xué)生用書第57~59頁(yè))自主學(xué)習(xí) 回歸教材1.(必修5P39例3改編)已知等差數(shù)列{an},如果點(diǎn)(n,an)在直線y=2x-1上,那么公差d= .【答案】2【解析】由題意知an=2n-1,所以公差為2.2.(必修5P48習(xí)題7改編)在等差數(shù)列{an}中,已知S
2025-06-29 16:37
【總結(jié)】《等差、等比數(shù)列》專項(xiàng)練習(xí)題1、選擇題:1.已知等差數(shù)列{an}中,a1=1,d=1,則該數(shù)列前9項(xiàng)和S9等于( ?。?.已知等差數(shù)列{an}的公差為正數(shù),且a3·a7=-12,a4+a6=-4,則S20為( ?。〢.180 B.-180 C.90 D.-903.已知等差數(shù)列{an}中,a2+a8=8,則該數(shù)列前9
2025-03-25 06:56
【總結(jié)】等差數(shù)列與等比數(shù)列總結(jié)一、等差數(shù)列:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差常用小寫字母d表示;等差中項(xiàng),如果,那么A叫做a與b的等差中項(xiàng);如果三個(gè)數(shù)成等差數(shù)列,那么等差中項(xiàng)等于另兩項(xiàng)的算術(shù)平均數(shù);等差數(shù)列的通項(xiàng)公式:;等差數(shù)列的遞推公式:;等差數(shù)列的前n項(xiàng)和公式:===
2025-06-29 15:47
【總結(jié)】等比數(shù)列練習(xí)題①在等差數(shù)列中,若,則.②已知數(shù)列中,,又?jǐn)?shù)列{}是等差數(shù)列,則1.等比數(shù)列中,已知(Ⅰ)求的通項(xiàng)公式(Ⅰ)若分別為等差數(shù)列的第3項(xiàng)和第5項(xiàng),試求數(shù)列的通項(xiàng)公式及前項(xiàng)和.:,,.(Ⅰ)求的通項(xiàng)公式及前項(xiàng)和(Ⅰ)已知是等差數(shù)列,為前項(xiàng)和,且,,求.3.等比數(shù)列的公比為,作數(shù)列使,求證數(shù)列也是等
2025-01-15 10:21
【總結(jié)】等比數(shù)列1、觀察下列數(shù)列,指出它們的共同特征:(1)1,2,4,8,….(2)….(3)1,20,202,203,….(4)活期存入10000元,年利率是%,按照復(fù)利,5年內(nèi)各年末本利和分別是10000(1+),10000(1+)2,10000(1+)3,1
2024-07-30 17:18
【總結(jié)】等比數(shù)列·例題解析【例1】已知Sn是數(shù)列{an}的前n項(xiàng)和,Sn=pn(p∈R,n∈N*),那么數(shù)列{an}.[]A.是等比數(shù)列B.當(dāng)p≠0時(shí)是等比數(shù)列C.當(dāng)p≠0,p≠1時(shí)是等比數(shù)列D.不是等比數(shù)列分析由Sn=pn(n∈N*),有a1=S1=p,并且當(dāng)
2024-11-11 05:30
【總結(jié)】課時(shí)作業(yè)9 等比數(shù)列時(shí)間:45分鐘 滿分:100分課堂訓(xùn)練1.已知a、b、c成等比數(shù)列,且a=2,c=6,則b為( )A.2 B.-2C.±2 D.18【答案】 C【解析】 由b2=ac=2×6=12,得b=±2.2.公差不為零的等差數(shù)列{an},a2,a3,a7成等比數(shù)列,則它的公比為( )A.-4
2025-06-25 05:36
【總結(jié)】高中數(shù)學(xué)必修5期末復(fù)習(xí)等比數(shù)列1.在等比數(shù)列中,和是二次方程的兩個(gè)根,則的值為()(A)(B)(C)(D)2.已知三角形的三邊構(gòu)成等比數(shù)列,它們的公比為,則的取值范圍是()A.B.C.D.{an}是由正數(shù)組成的等比數(shù)列,公比q=2,且a1·a2·a
2025-06-25 05:16
【總結(jié)】?要點(diǎn)·疑點(diǎn)·考點(diǎn)?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第4課時(shí)等差、等比數(shù)列的應(yīng)用要點(diǎn)·疑點(diǎn)·考點(diǎn)按復(fù)利計(jì)算利息的一種儲(chǔ)蓄,本金為a元,每期利率為r,存期為
2024-11-12 16:42
【總結(jié)】等差與等比數(shù)列綜合(2)作業(yè)訂正:兩個(gè)等差數(shù)列{an}{bn},a1=0,b1=-4,Sk,Sk’分別是這兩個(gè)數(shù)列前k,項(xiàng)和,若Sk+Sk’=0,則ak+bk=?變:數(shù)列{an+b},a,b為常數(shù),a1時(shí),比較Sn、n(a+b)、n(an+b)題題通23練45頁(yè)10(1)已知數(shù)列{},=2
2024-08-03 15:40
【總結(jié)】第一篇:等差數(shù)列、等比數(shù)列知識(shí)點(diǎn)梳理 等差數(shù)列和等比數(shù)列知識(shí)點(diǎn)梳理 第一節(jié):等差數(shù)列的公式和相關(guān)性質(zhì) 1、等差數(shù)列的定義:對(duì)于一個(gè)數(shù)列,如果它的后一項(xiàng)減去前一項(xiàng)的差為一個(gè)定值,則稱這個(gè)數(shù)列為等差...
2024-11-09 22:38
【總結(jié)】構(gòu)造等差數(shù)列或等比數(shù)列?由于等差數(shù)列與等比數(shù)列的通項(xiàng)公式顯然,對(duì)于一些遞推數(shù)列問(wèn)題,若能構(gòu)造等差數(shù)列或等比數(shù)列,無(wú)疑是一種行之有效的構(gòu)造方法.?例1?設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前n項(xiàng)和為Sn,對(duì)于任意正整數(shù)n,都有等式:成立,求的通項(xiàng)an.?解:,??∴????,
2025-06-24 16:44