【摘要】2020屆高考數(shù)學復習強化雙基系列課件36《等差數(shù)列與等比數(shù)列的綜合問題》課前熱身:30,37,32,35,34,33,36,(),38的特點,在括號內(nèi)適當?shù)囊粋€數(shù)是_____.x的方程x2-x+a=0和x2-x+b=0(a,b∈R且a≠b)的四
2024-11-23 08:49
【摘要】數(shù)列、極限、數(shù)學歸納法·等差、等比數(shù)列綜合問題·教案教學目標1.熟練運用等差、等比數(shù)列的概念、通項公式、前n項和公式以及有關性質(zhì),分析和解決等差、等比數(shù)列的綜合問題.2.突出方程思想的應用,引導學生選擇簡捷合理的運算途徑,提高運算速度和運算能力.教學重點與難點1.用方程的觀點認識等差、等比數(shù)列的基礎知識、從本質(zhì)上掌握公式.2.解決應用問題時,分
2025-06-16 19:16
【摘要】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第1課時等差數(shù)列與等比數(shù)列要點·疑點·考點(比)數(shù)列的定義如果一個數(shù)列從第二項起,每一項與它的前一項的差(
2024-08-20 19:28
【摘要】主導:王xxxxxx主演:0622班學生3、1數(shù)列的概念1、數(shù)列的定義:按一定順序排列的一列數(shù)叫數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項。根據(jù)數(shù)列的定義知:數(shù)列是按一定順序排列的一列數(shù).因此,若兩個數(shù)列中被排列的數(shù)相同,但次序不同,則
2024-11-22 01:48
【摘要】練習:設正項數(shù)列{an}的前n項和為Sn,且存在正數(shù)t,使得對所有正整數(shù)n,t與an的等差中項和t與Sn的等比中項相等.求證:數(shù)列{}為等差數(shù)列,并求{an}的通項公式及前n項和.nS等差數(shù)列與等比數(shù)列的類比????.,,11nnnTnbqbb項的積的前求該數(shù)
2025-05-12 02:44
【摘要】中國領先的中小學教育品牌精銳教育學科教師輔導講義講義編號11sh11sx00學員編號:年級:課時數(shù):3學員姓名:
2024-09-02 16:48
【摘要】等差數(shù)列與等比數(shù)列的應用復習提問1、口答:(1)等差數(shù)列的通項公式______?na前n項和公式_____?nS或_____?nS(2)等比數(shù)列的通項公式______?na前n項和公式:當1?q時,_____?nS或_____?nS數(shù)列等差
2025-05-24 17:18
【摘要】n要點要點·疑點疑點·考點考點n課課前前熱熱身身?n能力能力·思維思維·方法方法?n延伸延伸·拓展拓展n誤誤解解分分析析第1課時等差數(shù)列與等比數(shù)列要點要點·疑點疑點·考點考點(比)數(shù)列的定義如果一
2024-08-31 01:53
【摘要】第19講等差數(shù)列與等比數(shù)列綜合運用一、等比數(shù)列與等差數(shù)列的概念分析等差數(shù)列等比數(shù)列定義差商通項公式結(jié)構(gòu)相似,性質(zhì)類似,不同地方1(1)naand???(和)11nnaaq???(積)不同點項沒有限制項必須非零聯(lián)系⑴正項等比數(shù)列
2024-11-22 07:28
【摘要】等差數(shù)列、等比數(shù)列課時考點4高三數(shù)學備課組考試內(nèi)容:數(shù)列.等差數(shù)列及其通項公式.等差數(shù)列前n項和公式.等比數(shù)列及其通項公式.等比數(shù)列前n項和公式.考試要求:(1)理解數(shù)列的概念,了解數(shù)列通項公式的意義.了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項.(2)理解等差數(shù)列的概念,
2025-08-03 15:40
【摘要】第1講 等差數(shù)列、等比數(shù)列【自主學習】第1講 等差數(shù)列、等比數(shù)列(本講對應學生用書第57~59頁)自主學習 回歸教材1.(必修5P39例3改編)已知等差數(shù)列{an},如果點(n,an)在直線y=2x-1上,那么公差d= .【答案】2【解析】由題意知an=2n-1,所以公差為2.2.(必修5P48習題7改編)在等差數(shù)列{an}中,已知S
2025-07-08 16:37
【摘要】1等差數(shù)列求和公式:(1)Sn=n(a1+an)/2(2)Sn=na1+n(n-1)d/22等比數(shù)列求和公式:(1)Sn=1-qa1(1-qn)q≠1q≠1(2)Sn=1-qa1-anq當q=1時,Sn=na1練習:求和1.1+2+3+……+n答案:Sn=n
2025-05-24 17:19
【摘要】
2024-11-24 17:10
【摘要】等差、等比數(shù)列的求和公式一、考綱要求:掌握等差的求和公式、等比數(shù)列的求和公式.二、教學目標:1、掌握等差數(shù)列前n項和公式及其推導過程2、掌握等比數(shù)列前n項和公式及其推導過程3、能熟練利用公式解決相關問題三、重點難點掌握公式的推導方法和公式的應用教學過程:知識梳理:1.(1)等差數(shù)列的前項和(倒序相加法):公式1:公式2:;(2)若數(shù)
2025-06-16 21:56
【摘要】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第4課時等差、等比數(shù)列的應用要點·疑點·考點按復利計算利息的一種儲蓄,本金為a元,每期利率為r,存期為
2024-11-24 16:42