【總結(jié)】主導:王xxxxxx主演:0622班學生3、1數(shù)列的概念1、數(shù)列的定義:按一定順序排列的一列數(shù)叫數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項。根據(jù)數(shù)列的定義知:數(shù)列是按一定順序排列的一列數(shù).因此,若兩個數(shù)列中被排列的數(shù)相同,但次序不同,則
2024-11-10 01:48
【總結(jié)】名師大講堂·2021高考總復習《數(shù)學》(理科)等差數(shù)列、等比數(shù)列的綜合應用名師大講堂·2021高考總復習《數(shù)學》(理科)1.遞推數(shù)列{an}在復習時注意掌握難度,以“注重通性通法,淡化特殊技巧”為原則,會求an+1=an+f(n)、an+1=pan+
2025-05-14 03:33
【總結(jié)】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第1課時等差數(shù)列與等比數(shù)列要點·疑點·考點(比)數(shù)列的定義如果一個數(shù)列從第二項起,每一項與它的前一項的差(
2025-08-05 19:28
【總結(jié)】n要點要點·疑點疑點·考點考點n課課前前熱熱身身?n能力能力·思維思維·方法方法?n延伸延伸·拓展拓展n誤誤解解分分析析第1課時等差數(shù)列與等比數(shù)列要點要點·疑點疑點·考點考點(比)數(shù)列的定義如果一
2025-08-16 01:53
【總結(jié)】等差數(shù)列與等比數(shù)列的應用復習提問1、口答:(1)等差數(shù)列的通項公式______?na前n項和公式_____?nS或_____?nS(2)等比數(shù)列的通項公式______?na前n項和公式:當1?q時,_____?nS或_____?nS數(shù)列等差
2025-05-12 17:18
【總結(jié)】浮梁一中:余盛洋QQ:85431339北師大版高中數(shù)學必修5第一章《數(shù)列》浮梁一中余盛洋制作浮梁一中:余盛洋QQ:85431339一、教學目標:1、知識與技能:⑴了解現(xiàn)實生活中存在著一類特殊的數(shù)列;⑵理解等比數(shù)列的概念,探索并掌握等比數(shù)列的通項公式;⑶能在具體的問題情境中,發(fā)現(xiàn)數(shù)列的等比關(guān)系,并能用有關(guān)的知識解決相應的實際問題;⑷
2024-11-21 02:05
【總結(jié)】【等比數(shù)列】本卷共100分,考試時間90分鐘一、選擇題 (每小題4分,共40分)1.已知等比數(shù)列中,且,則()A.B.C.D.,且·=2=1,則=()A.B.C.3.在等比數(shù)列中,則()A.B.
2025-04-04 05:00
【總結(jié)】等比數(shù)列(一)復習引入觀察這幾個數(shù)列,看有何共同特點?1,2,4,8,16,…,263;;81,41,21,1?1,20,202,203,5,5,5,5,……;.①②③④復習引入觀察這幾個
2025-07-21 04:00
【總結(jié)】練習:設正項數(shù)列{an}的前n項和為Sn,且存在正數(shù)t,使得對所有正整數(shù)n,t與an的等差中項和t與Sn的等比中項相等.求證:數(shù)列{}為等差數(shù)列,并求{an}的通項公式及前n項和.nS等差數(shù)列與等比數(shù)列的類比????.,,11nnnTnbqbb項的積的前求該數(shù)
2025-05-03 02:44
【總結(jié)】
2024-11-12 17:10
【總結(jié)】1等差數(shù)列求和公式:(1)Sn=n(a1+an)/2(2)Sn=na1+n(n-1)d/22等比數(shù)列求和公式:(1)Sn=1-qa1(1-qn)q≠1q≠1(2)Sn=1-qa1-anq當q=1時,Sn=na1練習:求和1.1+2+3+……+n答案:Sn=n
2025-05-12 17:19
【總結(jié)】等差數(shù)列性質(zhì)總結(jié):(d為常數(shù))();2.等差數(shù)列通項公式:,首項:,公差:d,末項:推廣:.從而;3.等差中項(1)如果,,成等差數(shù)列,那么叫做與的等差中項.即:或(2)等差中項:數(shù)列是等差數(shù)列4.等差數(shù)列的前n項和公式:(其中A、B是常數(shù),所以當d≠0時,Sn是關(guān)于n的二次式且常數(shù)項為0)特別地,當項數(shù)
2025-06-30 04:17
【總結(jié)】等差數(shù)列和等比數(shù)列的復習一、知識要點1.等差數(shù)列和等比數(shù)列是兩種最基本,最常見的數(shù)列.應熟練掌握等差、等比數(shù)列的定義、通項公式、前n項和公式,通過通項公式與前n項和公式聯(lián)系著五個基本量a1,d(或q),n,an,Sn,“已知其三必可求其余二”,將等差、等比數(shù)列問題,轉(zhuǎn)化為關(guān)于這五個基本量的運算問題,是常見的解題方法.2.等差、等比數(shù)列具有很多特殊性質(zhì),在運算時,除轉(zhuǎn)化為基本量
2025-06-07 21:08
【總結(jié)】等差、等比數(shù)列的求和公式一、考綱要求:掌握等差的求和公式、等比數(shù)列的求和公式.二、教學目標:1、掌握等差數(shù)列前n項和公式及其推導過程2、掌握等比數(shù)列前n項和公式及其推導過程3、能熟練利用公式解決相關(guān)問題三、重點難點掌握公式的推導方法和公式的應用教學過程:知識梳理:1.(1)等差數(shù)列的前項和(倒序相加法):公式1:公式2:;(2)若數(shù)
2025-06-07 21:56
【總結(jié)】等比數(shù)列1、觀察下列數(shù)列,指出它們的共同特征:(1)1,2,4,8,….(2)….(3)1,20,202,203,….(4)活期存入10000元,年利率是%,按照復利,5年內(nèi)各年末本利和分別是10000(1+),10000(1+)2,10000(1+)3,1
2025-07-21 17:18