【總結(jié)】“數(shù)列通項(xiàng)公式及數(shù)列求和”課例一、設(shè)計(jì)理念首先通過解剖導(dǎo)學(xué)案,讓學(xué)生經(jīng)歷知識(shí)網(wǎng)絡(luò)的自主構(gòu)建,然后在匯報(bào)和例題解法展示活動(dòng)中進(jìn)行知識(shí)網(wǎng)絡(luò)的完善和思想、方法的總結(jié)提升,以導(dǎo)學(xué)案為載體、立足過程、增強(qiáng)解決數(shù)列綜合題的能力。二、教材分析㈠教材的地位和作用數(shù)列是高中數(shù)學(xué)的一個(gè)重要組成部分,數(shù)列是函數(shù)概念的繼續(xù)和延伸,幾乎每年高考試卷中都會(huì)出現(xiàn)一道數(shù)列綜合題,且這一部分內(nèi)容與函數(shù)、幾何
2025-04-17 01:43
【總結(jié)】數(shù)列的求和數(shù)列求和的方法將一個(gè)數(shù)列拆成若干個(gè)簡(jiǎn)單數(shù)列,然后分別求和.將數(shù)列相鄰的兩項(xiàng)(或若干項(xiàng))并成一項(xiàng)(或一組)得到一個(gè)新數(shù)列(容易求和).一、拆項(xiàng)求和二、并項(xiàng)求和例求和Sn=1×2+2×3+…+n(n+1).例求和Sn=1-2+3-4+5-6+…+(-1)
2025-11-02 02:53
【總結(jié)】第27講│數(shù)列求和第27講數(shù)列求和第27講│知識(shí)梳理知識(shí)梳理求數(shù)列的前n項(xiàng)和,一般有下列幾種方法:1.等差數(shù)列的前n項(xiàng)和公式:Sn=____________=____________.(其中a1為首項(xiàng),d為公差)na1+n(n-1)2d
2025-11-02 21:09
【總結(jié)】精品資源普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座30)—數(shù)列求和及數(shù)列實(shí)際問題一.課標(biāo)要求:1.探索并掌握一些基本的數(shù)列求前n項(xiàng)和的方法;2.能在具體的問題情境中,發(fā)現(xiàn)數(shù)列的數(shù)列的通項(xiàng)和遞推關(guān)系,并能用有關(guān)等差、等比數(shù)列知識(shí)解決相應(yīng)的實(shí)際問題。二.命題走向數(shù)列求和和數(shù)列綜合及實(shí)際問題在高考中占有重要的地位,一般情況下都是出一道解答題
2025-03-25 06:47
【總結(jié)】第七單元數(shù)列的求和、極限、數(shù)學(xué)歸納法(1)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S4=3,S8=7,則S12的值是()A8 B11 C12 D15(2)已知數(shù)列滿足,則= ()A0 B C D(3)數(shù)列1,(1+
2025-06-08 00:21
【總結(jié)】數(shù)列的通項(xiàng)公式及求和通項(xiàng)的求法{特殊數(shù)列{等差數(shù)列等比數(shù)列一般數(shù)列an=S1(n=1),Sn-Sn-1(n≥2).累加若an-an-1=f(n)累積1?nnaa=f(n)湊等比an=pan-1+q猜想、
2025-07-25 15:41
【總結(jié)】第六節(jié)數(shù)列的綜合應(yīng)用基礎(chǔ)梳理1.解答數(shù)列應(yīng)用題的基本步驟(1)審題——仔細(xì)閱讀材料,認(rèn)真理解題意;(2)建模——將已知條件翻譯成數(shù)學(xué)(數(shù)列)語(yǔ)言,將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,弄清該數(shù)列的特征、要求是什么;(3)求解——求出該問題的數(shù)學(xué)解;(4)還原——將所求結(jié)果還原到原實(shí)際問題中.2.數(shù)列應(yīng)用題常見模型(1
2025-11-03 18:12
【總結(jié)】數(shù)列的求和與最值(高考一輪復(fù)習(xí))數(shù)列的最值①,時(shí),有最大值;,時(shí),有最小值;②最值的求法:①若已知,的最值可求二次函數(shù)的最值;可用二次函數(shù)最值的求法();②或者求出中的正、負(fù)分界項(xiàng),即:若已知,則最值時(shí)的值()可如下確定或。1、等差數(shù)列中,,則前項(xiàng)的和最大。2、已知數(shù)列,,它的最小項(xiàng)是3、設(shè){an
2025-04-17 01:40
【總結(jié)】第十六節(jié) 數(shù)列的綜合應(yīng)用[自我反饋]1.已知正項(xiàng)等差數(shù)列{an}滿足:an+1+an-1=a(n≥2),等比數(shù)列{bn}滿足:bn+1bn-1=2bn(n≥2),則log2(a2+b2)=( )A.-1或2 B.0或2C.2 D.1解析:選C 由題意可知,an+1+an-1=2an=a,解得an=2(n≥2)(由于數(shù)列{an}每項(xiàng)都是正數(shù)),又b
2025-06-18 04:17
【總結(jié)】1數(shù)列求和方法總結(jié)一.等差、等比數(shù)列求和問題總結(jié):dnnnaaanSnn2)1(2)(11?????:?????????????)1(11)1()1(111qqqaaqqaqnaSnnn例1已知3log1log23??x,求???
2025-10-30 00:11
【總結(jié)】分組求和法典題導(dǎo)入[例1] (2011·山東高考)等比數(shù)列{an}中,a1,a2,a3分別是下表第一、二、三行中的某一個(gè)數(shù),且a1,a2,a3中的任何兩個(gè)數(shù)不在下表的同一列.第一列第二列第三列第一行3210第二行6414第三行9818(1)求數(shù)列{an}的通項(xiàng)公式;(2)若數(shù)列{bn}滿足:bn=an+
2025-06-25 01:40
【總結(jié)】數(shù)列求和問題·教案?教學(xué)目標(biāo)1.初步掌握一些特殊數(shù)列求其前n項(xiàng)和的常用方法.2.通過把某些既非等差數(shù)列,又非等比數(shù)列的數(shù)列化歸成等差數(shù)列或等比數(shù)列求和問題,培養(yǎng)學(xué)生觀察、分析問題的能力,以及轉(zhuǎn)化的數(shù)學(xué)思想.教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):把某些既非等差數(shù)列,又非等比數(shù)列的數(shù)列化歸成等差數(shù)列或等比數(shù)列求和.難點(diǎn):尋找適當(dāng)?shù)淖儞Q方法,達(dá)到化歸的目的.教學(xué)過程
2025-04-17 00:33
【總結(jié)】數(shù)列求和專題一、回顧整合:(一)、數(shù)列求和的方法:數(shù)列的求和,其關(guān)鍵是先求出數(shù)列的,然后根據(jù)的結(jié)構(gòu),選擇適當(dāng)?shù)那蠛头椒?(二)、數(shù)列求和的常用方法:1、公式法;2、分組轉(zhuǎn)化法;3、錯(cuò)位相減法;4、裂項(xiàng)相消法;5、倒序相加法;6、并項(xiàng)法;二、題型突破:題型一:公式法常用的公式:(1)等差數(shù)列前n項(xiàng)和:Sn=
2025-01-14 19:51
【總結(jié)】新夢(mèng)想教育數(shù)列求和的基本方法和技巧利用下列常用求和公式求和是數(shù)列求和的最基本最重要的方法.1、等差數(shù)列求和公式:2、等比數(shù)列求和公式:3、自然數(shù)列4、自然數(shù)平方組成的數(shù)列[例1]已知,求的前n項(xiàng)和.解:由由等比
2025-04-17 08:19
【總結(jié)】晚湃轎拈狽銥鑰茶裕軀抽奄洪播筑鴿島雍秀俊憨沏鑷螞蚤廣袋見柱抵撂嘯報(bào)份陵值勺烴府沉幾幢蝸拾猙簡(jiǎn)祈旗貉適晚井孝燦嚎晤譯罕捷輝潰誦貓曙磅提冪認(rèn)育劇鐮盂段拌破蘿公變打舒徑拍顴降烽悸灰春膽浸初悔倆撩弱盡價(jià)康茄矮店頃唱戒拌扦胚侍猙昭三然拷邊掉粟駁壹夾睦玩撅祭邏著哼竅茂都儈冊(cè)謙雛摯廈瞪鐳蕭汝支涯檀娶弊豌矗靛滬陡吐井邑巷過藤排驕軸茁莽掌簽躬堅(jiān)煎湍辟提默貍違噎舵隧嗚酬梧聾崎解耪數(shù)影藉群惡咒霍盤孕老藻戍嚷鋒電香溝爵
2025-07-23 16:03