freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

20xx-20xx中考數學壓軸題專題復習—二次函數的綜合(編輯修改稿)

2025-03-30 22:21 本頁面
 

【文章內容簡介】 )當何值時,的面積最大?并求最大值的立方根;(3)是否存在點使為直角三角形?若存在,求出的值;若不存在,說明理由.【答案】(1)拋物線解析式為y=﹣x2+2x+3;(2)當t=時,△PEF的面積最大,其最大值為,最大值的立方根為=;(3)存在滿足條件的點P,t的值為1或【解析】試題分析:(1)由A、B、C三點的坐標,利用待定系數法可求得拋物線解析式;(2)由A、C坐標可求得平行四邊形的中心的坐標,由拋物線的對稱性可求得E點坐標,從而可求得直線EF的解析式,作PH⊥x軸,交直線l于點M,作FN⊥PH,則可用t表示出PM的長,從而可表示出△PEF的面積,再利用二次函數的性質可求得其最大值,再求其最大值的立方根即可;(3)由題意可知有∠PAE=90176。或∠APE=90176。兩種情況,當∠PAE=90176。時,作PG⊥y軸,利用等腰直角三角形的性質可得到關于t的方程,可求得t的值;當∠APE=90176。時,作PK⊥x軸,AQ⊥PK,則可證得△PKE∽△AQP,利用相似三角形的性質可得到關于t的方程,可求得t的值.試題解析: (1)由題意可得,解得,∴拋物線解析式為y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴線段AC的中點為(,),∵直線l將平行四邊形ABCD分割為面積相等兩部分,∴直線l過平行四邊形的對稱中心,∵A、D關于對稱軸對稱,∴拋物線對稱軸為x=1,∴E(3,0),設直線l的解析式為y=kx+m,把E點和對稱中心坐標代入可得,解得,∴直線l的解析式為y=﹣x+,聯(lián)立直線l和拋物線解析式可得,解得或,∴F(﹣,),如圖1,作PH⊥x軸,交l于點M,作FN⊥PH,∵P點橫坐標為t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,∴S△PEF=S△PFM+S△PEM=PM?FN+PM?EH=PM?(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+,∴當t=時,△PEF的面積最大,其最大值為,∴最大值的立方根為=;(3)由圖可知∠PEA≠90176。,∴只能有∠PAE=90176。或∠APE=90176。,①當∠PAE=90176。時,如圖2,作PG⊥y軸,∵OA=OE,∴∠OAE=∠OEA=45176。,∴∠PAG=∠APG=45176。,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②當∠APE=90176。時,如圖3,作PK⊥x軸,AQ⊥PK,則PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90176。,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴,即,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),綜上可知存在滿足條件的點P,t的值為1或.考點:二次函數綜合題8.已知,拋物線y=﹣x2+bx+c經過點A(﹣1,0)和C(0,3).(1)求拋物線的解析式;(2)在拋物線的對稱軸上,是否存在點P,使PA+PC的值最?。咳绻嬖?,請求出點P的坐標,如果不存在,請說明理由;(3)設點M在拋物線的對稱軸上,當△MAC是直角三角形時,求點M的坐標.【答案】(1);(2)當的值最小時,點P的坐標為;(3)點M的坐標為、或.【解析】【分析】由點A、C的坐標,利用待定系數法即可求出拋物線的解析式;連接BC交拋物線對稱軸于點P,此時取最小值,利用二次函數圖象上點的坐標特征可求出點B的坐標,由點B、C的坐標利用待定系數法即可求出直線BC的解析式,利用配方法可求出拋物線的對稱軸,再利用一次函數圖象上點的坐標特征即可求出點P的坐標;設點M的坐標為,則,,分、和三種情況,利用勾股定理可得出關于m的一元二次方程或一元一次方程,解之可得出m的值,進而即可得出點M的坐標.【詳解】解:將、代入中,得:,解得:,拋物線的解析式為.連接BC交拋物線對稱軸于點P,此時取最小值,如圖1所示.當時,有,解得:,點B的坐標為.拋物線的解析式為,拋物線的對稱軸為直線.設直線BC的解析式為,將、代入中,得:,解得:,直線BC的解析式為.當時,當的值最小時,點P的坐標為.設點M的坐標為,則,.分三種情況考慮:當時,有,即,解得:,點M的坐標為或;當時,有,即,解得:,點M的坐標為;當時,有,即,解得:,點M的坐標為綜上所述:當是直角三角形時,點M的坐標為、或【點睛】本題考查待定系數法求二次一次函數解析式、二次一次函數圖象的點的坐標特征、軸對稱中的最短路徑問題以及勾股定理,解題的關鍵是:由點的坐標,利用待定系數法求出拋物線解析式;由兩點之間線段最短結合拋物線的對稱性找出點P的位置;分、和三種情況,列出關于m的方程.9.溫州茶山楊梅名揚中國,某公司經營茶山楊梅業(yè)務,以3萬元/噸的價格買入楊梅,包裝后直接銷售,包裝成本為1萬元/噸,它的平均銷售價格y(單位:萬元/噸)與銷售數量x(2≤x≤10,單位:噸)之間的函數關系如圖所示.(1)若楊梅的銷售量為6噸時,它的平均銷售價格是每噸多少萬元?(2)當銷售數量為多少時,該經營這批楊梅所獲得的毛利潤(w)最大?最大毛利潤為多少萬元?(毛利潤=銷售總收入﹣進價總成本﹣包裝總費用)(3)經過市場調查發(fā)現,楊梅深加工后不包裝直接銷售,平均銷售價格為12萬元/噸.深加工費用y(單位:萬元)與加工數量x(單位:噸)之間的函數關系是y=x+3(2≤x≤10).①當該公司買入楊梅多少噸時,采用深加工方式與直接包裝銷售獲得毛利潤一樣?②該公司買入楊梅噸數在   范圍時,采用深加工方式比直接包裝銷售獲得毛利潤大些?【答案】(1)楊梅的銷售量為6噸時,它的平均銷售價格是每噸10萬元;(2)當x=8時,此時W最大值=40萬元;(3)①該公司買入楊梅3噸;②3<x≤8.【解析】【分析】(1)設其解析式為y=kx+b,由圖象經過點(2,12),(8,9)兩點,得方程組,即可得到結論;(2)根據題意得,w=(y﹣4)x=(﹣x+13﹣4)x=﹣x2+9x,根據二次函數的性質即可得到結論;(3)①根據題意列方程,即可得到結論;②根據題意即可得到結論.【詳解】(1)由圖象可知,y是關于x的一次函數.∴設其解析式為y=kx+b,∵圖象經過點(2,12),(8,9)兩點,∴,解得k=﹣,b=13,∴一次函數的解析式為y=﹣x+13,當x=6時,y=10,答:若楊梅的銷售量為6噸時,它的平均銷售
點擊復制文檔內容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1