【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量數(shù)量積的坐標(biāo)表示、模、夾角學(xué)業(yè)達(dá)標(biāo)測試新人教A版必修41.若向量a=(3,m),b=(2,-1),a·b=0,則實數(shù)m的值為()A.-32C.2D.6解析:a·b=3×2+m×(-1)=6-m=0
2025-11-30 03:41
【總結(jié)】復(fù)習(xí)1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2平面向量基本定理:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.
2025-11-08 17:33
【總結(jié)】課題平面向量數(shù)量積的坐標(biāo)表示、模、夾角教學(xué)目標(biāo)知識與技能理解兩個向量數(shù)量積坐標(biāo)表示的推導(dǎo)過程,過程與方法能根據(jù)向量的坐標(biāo)計算向量的模,情感態(tài)度價值觀并推導(dǎo)平面內(nèi)兩點(diǎn)間的距離公式重點(diǎn)能根據(jù)向量的坐標(biāo)求向量的夾角及判定兩個向量垂直難點(diǎn)能運(yùn)用數(shù)量積的坐標(biāo)表示進(jìn)行向量數(shù)量積的運(yùn)算.
2025-11-26 06:47
【總結(jié)】向量的坐標(biāo)表示平面向量基本定理一、填空題1.若e1,e2是平面內(nèi)的一組基底,則下列四組向量能作為平面向量的基底的是________.①e1-e2,e2-e1②2e1+e2,e1+2e2③2e2-3e1,6e1-4e2④e1+e2,e1-e22.下面三種說法中,正確的是________.①一個平面
2025-11-26 10:15
【總結(jié)】第一頁,編輯于星期六:點(diǎn)三十二分。,2.3平面向量的基本定理及坐標(biāo)表示2.3.1平面向量基本定理,第二頁,編輯于星期六:點(diǎn)三十二分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點(diǎn)三十二分...
2025-10-13 18:48
【總結(jié)】高考總復(fù)習(xí)高中數(shù)學(xué)高考總復(fù)習(xí)平面向量基本定理及坐標(biāo)表示習(xí)題及詳解一、選擇題1.(2010·安徽)設(shè)向量a=(1,0),b=(,),則下列結(jié)論中正確的是( )A.|a|=|b| B.a(chǎn)·b=C.a(chǎn)-b與b垂直 D.a(chǎn)∥b[答案] C[解析] |a|=1,|b|=,故A錯;a·b=,故B錯;(a-b)·b=
2025-04-17 12:41
【總結(jié)】錯誤!未找到引用源。函數(shù)的基本性質(zhì)單元檢測(A卷)班級姓名分?jǐn)?shù)一、選擇題:(每小題5分,共30分)。1.已知函數(shù)y=(k+1)x+2在R上是減函數(shù),則()A新疆源頭學(xué)子小屋特級教師王新敞htp:/
2025-11-23 10:25
【總結(jié)】第二章平面向量平面向量的數(shù)量積平面向量數(shù)量積的坐標(biāo)表示、模、夾角1.理解并掌握平面向量的數(shù)量積的坐標(biāo)表示及運(yùn)算.(重點(diǎn))2.能夠用兩個向量的坐標(biāo)來判斷向量的垂直關(guān)系.(難點(diǎn))3.增強(qiáng)用向量法與坐標(biāo)法來處理向量問題的能力.(易混點(diǎn))1.兩向量的數(shù)量積與兩向量垂直的坐標(biāo)表示設(shè)向量a=(x1,y
2025-11-25 18:51
【總結(jié)】平面向量的坐標(biāo)表示與運(yùn)算OxyijaA(x,y)a1.以原點(diǎn)O為起點(diǎn)作,點(diǎn)A的位置由誰確定?aOA?由a唯一確定2.點(diǎn)A的坐標(biāo)與向量a的坐標(biāo)的關(guān)系?兩者相同向量a坐標(biāo)(x,y)一一對應(yīng)復(fù)習(xí)回顧已知
2025-11-09 12:09
【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示、模、夾角考查知識點(diǎn)及角度難易度及題號基礎(chǔ)中檔稍難向量數(shù)量積的運(yùn)算1、412與模有關(guān)的問題2、59、10向量的夾角與垂直問題3、67、8、111.設(shè)向量a=(1,0),b=??????12,12,則下列結(jié)論中正確的是()A.|a|=|b
【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示、模、夾角一、|a2b|≤|a||b|的應(yīng)用若a=(x1,y1),b=(x2,y2),則平面向量的數(shù)量積的性質(zhì)|a2b|≤|a||b|的坐標(biāo)表示為x1x2+y1y2≤2212122222121)(yyxxyxyx????≤(x12+y12)(x22+y22).不等式(x1x2
【總結(jié)】第1課時數(shù)列的概念1.?dāng)?shù)列的概念:數(shù)列是按一定的順序排列的一列數(shù),在函數(shù)意義下,數(shù)列是定義域為正整數(shù)N*或其子集{1,2,3,……n}的函數(shù)f(n).?dāng)?shù)列的一般形式為a1,a2,…,an…,簡記為{an},其中an是數(shù)列{an}的第項.2.?dāng)?shù)列的通項公式一個數(shù)列{an}的
2025-11-23 10:15
【總結(jié)】來源教學(xué)內(nèi)容:§教學(xué)目標(biāo)1.了解向量的物理背景及在物理中的意義2.理解向量、零向量、單位向量、相等向量的概念,會用字母表示向量,能讀寫已知圖中的向量;3.掌握向量的幾何表示,明確向量的長度、零向量、單位向量的幾何意義;4.了解共線向量、平行向量的概念,會根據(jù)圖形判定是否平行、共線、相
2025-11-29 16:21
【總結(jié)】第二章平面向量本章內(nèi)容介紹向量這一概念是由物理學(xué)和工程技術(shù)抽象出來的,是近代數(shù)學(xué)中重要和基本的數(shù)學(xué)概念之一,有深刻的幾何背景,是解決幾何問題的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可轉(zhuǎn)化為向量的加(減)法、數(shù)乘向量、數(shù)量積運(yùn)算,從而把圖形的基本性質(zhì)轉(zhuǎn)化為向量的運(yùn)算體系.向量是溝通代數(shù)、幾何與三角函數(shù)的一種工
2025-11-29 01:51
【總結(jié)】金太陽新課標(biāo)資源網(wǎng)第二章《平面向量》測試(3)(新人教A版必修4)一、選擇題1.化簡得()A.B.C.D.2.設(shè)分別是與向的單位向量,則下列結(jié)論中正確的是()A.B.C.D.3.已知下列命題中:(1)若,且,則或,(2)若,則或(3)若不平行的兩個非零向量,滿足,則(4)若與
2025-04-07 02:59