【摘要】§2.平面向量共線的坐標表示【學習目標、細解考綱】1、在理解向量共線的概念的基礎上,學習用坐標表示向量共線的條件。2、利用向量共線的坐標表示解決有關問題?!局R梳理、雙基再現(xiàn)】1、兩向量平行(共線)的條件若//(0)abb?則存在唯一實數(shù)使//ab?;反之,存在唯一實數(shù)?。使//
2024-11-30 13:46
【摘要】平面向量測試題一、選擇題:1。已知ABCD為矩形,E是DC的中點,且=,=,則=()(A)+(B)-(C)+(D)-2.已知B是線段AC的中點,則下列各式正確的是()(A)=-(B)=(C)=(D)=3.已知ABCDEF是正六邊形,且=,=,則=()(A)(B)(C)+(D)4.設,為不共
2025-06-23 01:37
【摘要】平面向量的基本定理及坐標表示平面向量基本定理平面向量的正交分解及坐標表示問題提出t57301p2???????1.向量加法與減法有哪幾種幾何運算法則?λa?(1)|λa|=|λ||a|;(2)λ0時,λa與a方向相同;λ0時,λa與a方向相反;λ=0時
2024-11-09 06:28
【摘要】正弦定理作業(yè)1、在ABC?中,若Abasin23?,則B等于()A.?30B.?60C.?30或?150D.?60或?120[2、在ABC?中,已知?45,1,2???Bcb,則a等于()A.226?B.
2024-11-30 14:39
【摘要】空間直角坐標系第1題.在空間直角坐標系中,點(123)P,,,過點P作平面xOy的垂線PQ,則Q的坐標為()A.(020),,B.(023),,C.(103),,D.(120),,答案:D.第2題.已知點(314)A?,,
2024-11-15 13:24
【摘要】圓的方程同步測試本試卷分第Ⅰ卷和第Ⅱ卷兩部分.共150分.第Ⅰ卷(選擇題,共50分)一、選擇題:在每小題給出的四個選項中,只有一項是符合題目要求的,請把正確答案的代號填在題后的括號內(每小題5分,共50分).1.方程052422?????mymxyx表示圓的充要條件是()A.
2024-12-02 10:14
【摘要】§2.平面向量的正交分解及坐標表示【學習目標、細解考綱】1、理解平面向量的正交分解。2、聯(lián)系直角坐標系,研究向量正交分解的坐標運算。【知識梳理、雙基再現(xiàn)】1、平面向量的正交分解把一個向量分解為_____________,叫做把向量正交分解。2、向量的坐標表示在平面直角坐標系中,分別取與x軸、
2024-12-02 08:37
【摘要】§2.平面向量的基本定理【學習目標、細解考綱】;.【知識梳理、雙基再現(xiàn)】:如果1e?,2e?是同一平面內兩個的向量,a?是這一平面內的任一向量,那么有且只有一對實數(shù),21,??使。其中,不共線的這兩個向量,1e?2e?叫做表示這一平
2024-11-30 13:51
【摘要】函數(shù)的應用(1)測試題一、選擇題1.一等腰三角形的周長是20,底邊y是關于腰長x的函數(shù),它的解析式為()A.y=20-2x(x10)B.y=20-2x(x<10)C.y=20-2x(5)D.y=20-2x(5<x<10)2.已知A,B兩地相距150千米,某人開汽車以60千米/小時的速
2024-11-30 14:35
【摘要】?1?14?§函數(shù))sin(????Ay的圖象【學習目標、細解考綱】“五點法”作出函數(shù))(???wxAsmy以及函數(shù))cos(???wxAy的圖象的圖象。AW、、?對函數(shù))sin???wxAy(的圖象的影響.xysin?的圖象變換到)
2024-12-02 10:24
【摘要】古典概型一、選擇題1、從長度為1,3,5,7,9五條線段中任取三條能構成三角形的概率是()A、21B、103C、51D、522、將8個參賽隊伍通過抽簽分成A、B兩組,每組4隊,其中甲、乙兩隊恰好不在同組的概率為()A、74B、21C
【摘要】【優(yōu)化指導】2021年高中數(shù)學新人教A版必修41.如果一架飛機向東飛行200km,再向南飛行300km,記飛機飛行的路程為s,位移為a,那么()A.s>|a|B.s<|a|C.s=|a|D.s與|a|不能比大小解析:s=200+300=500(km),|a|=2021+300
2024-12-08 13:12
【摘要】幾何概型一、選擇題1、取一根長度為3cm的繩子,拉直后在任意位置剪斷,那么間的兩段的長都不小于m的概率是()A、23B、13C、14D、不能確定2、某人睡午覺醒來,發(fā)覺表停了,他打開收音機想聽電臺整點報時
【摘要】第3課時平面向量的數(shù)量積基礎過關1.兩個向量的夾角:已知兩個非零向量和,過O點作=,=,則∠AOB=θ(0°≤θ≤180°)叫做向量與的.當θ=0°時,與;當θ=180°時,與;如果與的夾角是90°,我們說與垂直,記作.2.兩個向量的數(shù)量積的定義:已知兩
2025-06-08 00:02
【摘要】第1題.已知直線a,b和平面?,且ab?,a??,則b與?的位置關系是.答案:b?//或b??.第2題.已知兩個平面垂直,下列命題①一個平面內已知直線必垂直于另一個平面內的任意一條直線.②一個平面內的已知直線必垂直于另一個平面的無數(shù)條直線.③一個平面內的任
2024-12-02 10:15