【摘要】正弦定理作業(yè)1、在ABC?中,若Abasin23?,則B等于()A.?30B.?60C.?30或?150D.?60或?120[2、在ABC?中,已知?45,1,2???Bcb,則a等于()A.226?B.
2024-11-30 14:39
【摘要】空間直角坐標(biāo)系第1題.在空間直角坐標(biāo)系中,點(diǎn)(123)P,,,過(guò)點(diǎn)P作平面xOy的垂線PQ,則Q的坐標(biāo)為()A.(020),,B.(023),,C.(103),,D.(120),,答案:D.第2題.已知點(diǎn)(314)A?,,
2024-11-15 13:24
【摘要】圓的方程同步測(cè)試本試卷分第Ⅰ卷和第Ⅱ卷兩部分.共150分.第Ⅰ卷(選擇題,共50分)一、選擇題:在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的,請(qǐng)把正確答案的代號(hào)填在題后的括號(hào)內(nèi)(每小題5分,共50分).1.方程052422?????mymxyx表示圓的充要條件是()A.
2024-12-02 10:14
【摘要】§2.平面向量的正交分解及坐標(biāo)表示【學(xué)習(xí)目標(biāo)、細(xì)解考綱】1、理解平面向量的正交分解。2、聯(lián)系直角坐標(biāo)系,研究向量正交分解的坐標(biāo)運(yùn)算?!局R(shí)梳理、雙基再現(xiàn)】1、平面向量的正交分解把一個(gè)向量分解為_(kāi)____________,叫做把向量正交分解。2、向量的坐標(biāo)表示在平面直角坐標(biāo)系中,分別取與x軸、
2024-12-02 08:37
【摘要】§2.平面向量的基本定理【學(xué)習(xí)目標(biāo)、細(xì)解考綱】;.【知識(shí)梳理、雙基再現(xiàn)】:如果1e?,2e?是同一平面內(nèi)兩個(gè)的向量,a?是這一平面內(nèi)的任一向量,那么有且只有一對(duì)實(shí)數(shù),21,??使。其中,不共線的這兩個(gè)向量,1e?2e?叫做表示這一平
2024-11-30 13:51
【摘要】函數(shù)的應(yīng)用(1)測(cè)試題一、選擇題1.一等腰三角形的周長(zhǎng)是20,底邊y是關(guān)于腰長(zhǎng)x的函數(shù),它的解析式為()A.y=20-2x(x10)B.y=20-2x(x<10)C.y=20-2x(5)D.y=20-2x(5<x<10)2.已知A,B兩地相距150千米,某人開(kāi)汽車(chē)以60千米/小時(shí)的速
2024-11-30 14:35
【摘要】?1?14?§函數(shù))sin(????Ay的圖象【學(xué)習(xí)目標(biāo)、細(xì)解考綱】“五點(diǎn)法”作出函數(shù))(???wxAsmy以及函數(shù))cos(???wxAy的圖象的圖象。AW、、?對(duì)函數(shù))sin???wxAy(的圖象的影響.xysin?的圖象變換到)
2024-12-02 10:24
【摘要】古典概型一、選擇題1、從長(zhǎng)度為1,3,5,7,9五條線段中任取三條能構(gòu)成三角形的概率是()A、21B、103C、51D、522、將8個(gè)參賽隊(duì)伍通過(guò)抽簽分成A、B兩組,每組4隊(duì),其中甲、乙兩隊(duì)恰好不在同組的概率為()A、74B、21C
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)新人教A版必修41.如果一架飛機(jī)向東飛行200km,再向南飛行300km,記飛機(jī)飛行的路程為s,位移為a,那么()A.s>|a|B.s<|a|C.s=|a|D.s與|a|不能比大小解析:s=200+300=500(km),|a|=2021+300
2024-12-08 13:12
【摘要】幾何概型一、選擇題1、取一根長(zhǎng)度為3cm的繩子,拉直后在任意位置剪斷,那么間的兩段的長(zhǎng)都不小于m的概率是()A、23B、13C、14D、不能確定2、某人睡午覺(jué)醒來(lái),發(fā)覺(jué)表停了,他打開(kāi)收音機(jī)想聽(tīng)電臺(tái)整點(diǎn)報(bào)時(shí)
【摘要】第3課時(shí)平面向量的數(shù)量積基礎(chǔ)過(guò)關(guān)1.兩個(gè)向量的夾角:已知兩個(gè)非零向量和,過(guò)O點(diǎn)作=,=,則∠AOB=θ(0°≤θ≤180°)叫做向量與的.當(dāng)θ=0°時(shí),與;當(dāng)θ=180°時(shí),與;如果與的夾角是90°,我們說(shuō)與垂直,記作.2.兩個(gè)向量的數(shù)量積的定義:已知兩
2025-06-08 00:02
【摘要】第1題.已知直線a,b和平面?,且ab?,a??,則b與?的位置關(guān)系是.答案:b?//或b??.第2題.已知兩個(gè)平面垂直,下列命題①一個(gè)平面內(nèi)已知直線必垂直于另一個(gè)平面內(nèi)的任意一條直線.②一個(gè)平面內(nèi)的已知直線必垂直于另一個(gè)平面的無(wú)數(shù)條直線.③一個(gè)平面內(nèi)的任
2024-12-02 10:15