【總結】"【志鴻全優(yōu)設計】2021-2021學年高中數(shù)學平面向量線性運算的坐標表示課后訓練北師大版必修4"1.已知a=(1,1),b=(1,-1),則向量1322?ab等于().A.(-2,-1)B.(-2,1)C.(-1,0)D.(-1,2)2.若AB
2024-12-03 03:14
【總結】第一頁,編輯于星期六:點三十三分。,2.4平面向量的數(shù)量積2.4.2平面向量數(shù)量積的坐標表示、模、夾角,第二頁,編輯于星期六:點三十三分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三...
2024-10-22 18:49
【總結】平面向量基本定理如果是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量有且只有一對實數(shù)使.12ee,a,12,??,1122aee????不共線的向量叫做表示這一平面內(nèi)所有向量的一組基底.12e,e向量的
2024-11-19 17:33
【總結】平面向量的坐標運算Oxya引入:,點A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1
2024-11-18 15:55
【總結】課題平面向量數(shù)量積的坐標表示、模、夾角教學目標知識與技能理解兩個向量數(shù)量積坐標表示的推導過程,過程與方法能根據(jù)向量的坐標計算向量的模,情感態(tài)度價值觀并推導平面內(nèi)兩點間的距離公式重點能根據(jù)向量的坐標求向量的夾角及判定兩個向量垂直難點能運用數(shù)量積的坐標表示進行向量數(shù)量積的運算.
2024-12-05 06:47
【總結】2020/12/25平面向量數(shù)量積運算律2020/12/25規(guī)定:零向量與任意向量的數(shù)量積為0,即0.??0a1OBba向量叫做向量在向量上的正射影已知兩個非零向量a和b,它們的夾角為?,我們把數(shù)量
2024-11-18 12:10
【總結】§2.平面向量共線的坐標表示【學習目標、細解考綱】1、在理解向量共線的概念的基礎上,學習用坐標表示向量共線的條件。2、利用向量共線的坐標表示解決有關問題?!局R梳理、雙基再現(xiàn)】1、兩向量平行(共線)的條件若//(0)abb?則存在唯一實數(shù)使//ab?;反之,存在唯一實數(shù)?。使//
2024-11-30 13:46
【總結】向量數(shù)量積的運算律復習回顧正射影的數(shù)量cosla??(內(nèi)積)cos,??ababa·b=:(1).a?b?a?b=0(2).a?a=|a|2或aaa??||(3).cos?=||||baba?范圍0≤〈a,b〉≤π;平面
【總結】第一頁,編輯于星期六:點三十二分。,2.3平面向量的基本定理及坐標表示2.3.1平面向量基本定理,第二頁,編輯于星期六:點三十二分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十二分...
2024-10-22 18:48
【總結】平面幾何中的向量方法學習目標、垂直、相等、夾角和距離等問題.——向量法和坐標法.,體驗向量在解決幾何問題中的工具作用,培養(yǎng)創(chuàng)新精神.合作學習一、設計問題,創(chuàng)設情境問題1:若O為△ABC重心,則=.問題2:水渠橫斷面是四邊形ABCD,,且||=||,則這個四邊形為.
2024-11-19 20:38
【總結】第3課時平面向量的數(shù)量積基礎過關1.兩個向量的夾角:已知兩個非零向量和,過O點作=,=,則∠AOB=θ(0°≤θ≤180°)叫做向量與的.當θ=0°時,與;當θ=180°時,與;如果與的夾角是90°,我們說與垂直,記作.2.兩個向量的數(shù)量積的定義:已知兩
2025-06-08 00:02
【總結】課題平面向量基本定理教學目標知識與技能理解平面向量基本定理的內(nèi)容,了解向量一組基底的含義過程與方法在平面內(nèi),當一組基底選定后,會用這組基底來表示其他向量情感態(tài)度價值觀啟發(fā)引導,講練結合重點會應用平面向量基本定理解決有關平面向量的綜合問題難點同上教學設
【總結】(二)2.3.2平面向量的坐標運算(二)【學習要求】1.理解用坐標表示的平面向量共線的條件.2.能根據(jù)平面向量的坐標,判斷向量是否共線.3.掌握三點共線的判斷方法.【學法指導】1.應用平面向量共線條件的坐標表示來解決向量的共線問題優(yōu)點在于不需要引入?yún)?shù)“λ”,從而減少了未知數(shù)的個數(shù),而且使問題具有代
2025-01-13 20:56
【總結】平面向量應用舉例命題方向1向量在平面幾何中的應用例1求證:直徑所對的圓周角為直角.[分析]本題實質(zhì)就是證明AB→2BC→=0.[證明]設AO→=a,OB→=b,則AB→=a+b,OC→=a,BC→=a-b,|a|=|b|.
2024-11-19 19:09
【總結】第二章平面向量平面向量的基本定理及坐標表示1.掌握平面向量基本定理并能熟練應用.2.掌握平面向量的坐標運算.3.理解用坐標表示平面向量共線的條件及判斷向量是否共線.1.已知e1、e2是表示平面內(nèi)所有向量的一組基底,則下列各組向量中,不能作為平面向量一組基底的是()A.e1+e2和e1-e2