【總結】課題曲線與方程(理科)學習目標:,了解曲線與方程的對應關系..、圓與方程理解曲線與方程的關系;利用數(shù)形結合,直觀體會曲線上點的坐標與方程解的關系.學習重點:.結合已知的曲線及其方程實例,了解曲線與方程的對應關系.學習難點:利用數(shù)形結合,直觀體會曲線上點的坐標與方程解的關系.學習方法:以講學稿為依托的探究式教
2024-11-18 18:59
【總結】雙曲線的簡單性質課程目標學習脈絡1.掌握雙曲線的范圍、對稱性、頂點、漸近線及離心率等簡單幾何性質.2.感受雙曲線在刻畫現(xiàn)實世界和解決實際問題中的作用,體會數(shù)形結合思想.雙曲線x2a2?y2b2=1(a0,b0)的簡單性質知識拓展(1
2024-11-16 23:22
【總結】1北師大版高中數(shù)學選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2如圖,設i,j,k是空間三個兩兩垂直的向量,且有公共起點O。對于空間任意一個向量p=OP,設點Q為點P在i,j所確定的平面上的正投影,由平面基本定理可知,在OQ,k所確定的平面上,存在實數(shù)z,使得OP=OQ
2024-11-18 13:29
【總結】圓錐曲線與方程第二章§1橢圓橢圓的簡單幾何性質第二章課堂典例探究2課時作業(yè)3課前自主預習1課前自主預習.2.利用橢圓的簡單幾何性質解決一些簡單問題.橢圓的簡單幾何性質1.觀察橢圓的圖形可以發(fā)現(xiàn),橢圓是_____對稱圖形,也是_____
2024-11-16 23:27
【總結】§4用向量討論垂直與平行課程目標學習脈絡1.能用向量語言表述線線、線面、面面的平行、垂直關系.2.能用向量方法證明有關線、面位置關系的一些定理.3.能用向量方法解決立體幾何中的平行、垂直問題,體會向量方法在研究幾何問題中的作用,并培養(yǎng)學生的運算能力.一二一、空間中的垂直關
【總結】§3全稱量詞與存在量詞課程目標學習脈絡1.通過生活和數(shù)學中的豐富實例,理解全稱量詞和存在量詞的含義.2.初步體會對全稱命題和特稱命題的理解,能正確地對含有一個量詞的命題進行否定.1231.全稱量詞、全稱命題思考1如何理解全稱量詞和全稱命題?提示:對全稱量詞和
【總結】【成才之路】2021-2021學年高中數(shù)學雙曲線及其標準方程練習北師大版選修1-1一、選擇題1.已知A(0,-5)、B(0,5),|PA|-|PB|=2a,當a=3或5時,P點的軌跡為()A.雙曲線或一條直線B.雙曲線或兩條直線C.雙曲線一支或一條直線D.雙曲線一支或一條射線[答案]
2024-11-28 19:11
【總結】第三章§4把握熱點考向應用創(chuàng)新演練考點一考點二考點三理解教材新知4.1曲線與方程在平面直角坐標系中,到兩坐標軸距離相等的點的軌跡方程中.問題1:直線y=x上任一點M到兩坐標軸距離相等嗎?提示:相
2024-11-17 23:14
【總結】1北師大版高中數(shù)學選修2-1第一章《常用邏輯用語》常用邏輯用語小結與復習法門高中姚連省制作2知識網(wǎng)絡常用邏輯用語命題及其關系簡單的邏輯聯(lián)結詞全稱量詞與存在量詞四種命題充分條件與必要條件量詞全稱量詞存在量詞含有一個量詞的否定
2024-11-18 00:48
【總結】§3向量的坐標表示和空間向量基本定理空間向量的標準正交分解與坐標表示課程目標學習脈絡1.理解空間向量坐標的概念,會確定一些簡單幾何體的頂點坐標.2.理解向量a在向量b上的投影的概念,了解向量的數(shù)量積的幾何意義.121.空間向量的標準正交分解與坐標表示12名
【總結】拋物線的簡單性質課程目標學習脈絡1.了解拋物線的軸、頂點、離心率、通徑的概念.2.掌握拋物線上的點的坐標的取值范圍,拋物線的對稱性、頂點、離心率等簡單性質.3.會用頂點及通徑的端點畫拋物線的草圖.拋物線的簡單性質標準方程y2=2px(p0)y2=-
【總結】1空間向量運算的坐標表示北師大版高中數(shù)學選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2一、向量的直角坐標運算則設),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???a
2024-11-17 15:04
【總結】第二章空間向量與立體幾何§1從平面向量到空間向量課程目標學習脈絡1.經(jīng)歷從平面向量到空間向量的推廣過程.2.會說出空間向量有關概念的含義.3.能指出直線的方向向量和平面的法向量.4.會用直線的方向向量和直線上一點確定直線,會用法向量和點確定平面.一二一、向
【總結】§4邏輯聯(lián)結詞“且”“或”“非”課程目標學習脈絡1.通過數(shù)學實例,了解邏輯聯(lián)結詞“且”“或”“非”的含義.2.通過本節(jié)學習,會用“且”“或”“非”改寫有關命題,會寫一個命題的否定,并會判斷其真假.3.能舉實例,體會“且”“或”“非”
【總結】第三章§2理解教材新知把握熱點考向應用創(chuàng)新演練考點一考點二考點三看下面兩個問題:(1)三角函數(shù)都是周期函數(shù),y=tanx是三角函數(shù),所以y=tanx是周期函數(shù);(2)循環(huán)小數(shù)是有理數(shù),2·是循環(huán)小數(shù),所以2&
2024-11-18 08:08